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ABSTRACT
We present a generalisation of the electron localisation function (ELF) to current-density-functional
theory as a descriptor for the properties of molecules in the presence of magnetic fields. The result-
ing current ELF (cELF) is examined for a range of small molecular systems in field strengths up to B0 =
235 kT (one atomic unit). The cELF clearly depicts the compression of the molecular electronic struc-
ture in the directions perpendicular to the applied field and exhibits a structure similar to that of the
physical current densities. A topological analysis is performed to examine the changes in chemical
bonding upon application of a magnetic field.

1. Introduction

The electron localisation function (ELF), introduced
for Hartree–Fock theory by Becke and Edgecombe [1]
and extended to Kohn–Sham density-functional theory
(DFT) via an alternative interpretation due to Savin [2],
has enjoyed enormous success as a tool for understand-
ing and visualising chemical bonding. The ELF has been
widely applied to understand bonding in atoms [3],
molecules [4–9], clusters [10–13], and solid-state struc-
tures [14,15]. A topological analysis of ELF in the spirit
of Bader’s atoms-in-molecules approach [16] yields fur-
ther information on bonding in a given system [2,17–20],
although some caution should be exercised in interpreta-
tions based on this analysis [21].

Recently, we have studied exchange–correlation func-
tionals in current DFT (CDFT) for calculations of
molecules in the presence of strong uniform magnetic
fields [22–25]. In particular, in [25], we showed that the

CONTACT Andrew M. Teale andrew.teale@nottingham.ac.uk

current-dependent generalisation of the Tao–Perdew–
Staroverov–Scuseria (TPSS) meta-generalised-gradient-
approximation (meta-GGA) functional [26], denoted as
cTPSS (see also [27] for the use of cTPSS in response
theory), provides a reasonable description of molecules
in strong magnetic fields. In such fields, a new form
of bonding, perpendicular paramagnetic bonding, has
recently been identified [28]. The nature of this bond-
ing interaction was accurately captured and analysed in
terms of molecular-orbital energies and electron-density
differences at the CDFT level in [25] using the cTPSS
functional.

In Section 2, we propose a generalisation of the ELF
for molecules in a magnetic field. This generalisation is
applied to study chemical bonding in Section 3.1, whereas
a topological analysis is performed in Section 3.2. Finally,
in Section 3.3, the physical current density induced by
the field is visualised alongside the generalised ELF,
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1416 J. W. FURNESS ET AL.

illustrating the striking similarity in the topologies of
these quantities.

2. Theory

After reviewing the ELF as introduced in Hartree–Fock
theory in Section 2.1, we consider its adaption for Kohn–
Sham theory in Section 2.2. Finally, we discuss the gener-
alisation of the ELF to systems in magnetic fields in Sec-
tion 2.3.

2.1. ELF in Hartree–Fock theory

The definition of the ELF by Becke and Edgecombe [1]
focused on Hartree–Fock theory and the same-spin pair
density,

Pσσ
2 (r, r′) = ρσ (r)ρσ (r′) − ∣∣ρσ

1 (r, r′)
∣∣2,

ρσ
1 (r, r′) =

Nσ∑
i=1

ϕ∗
iσ (r′)ϕiσ (r). (1)

Expansion of the spherically averaged same-spin condi-
tional pair density

Pσσ
cond(r, r′) = ρσ (r′) − |ρσ

1 (r, r′)|2
ρσ (r)

(2)

to leading order gives

Pσσ
cond(r, s) = 1

3

[ Nσ∑
i=1

|∇ϕiσ (r)|2 − 1
4

|∇ρσ (r)|2
ρσ (r)

]
s2 + · · ·

= 1
3
Dσ (r)s2 . . . , (3)

where s is the radius of a spherical shell around r. The
term in brackets is related to the Fermi-hole curvature
derived by Becke [29] and generalised to non-zero cur-
rent densities by Dobson [30]. Becke and Edgecombe [1]
proposed to use this term as a measure of electron local-
isation, introducing the relative ELF measure

fELF,σ (r) = 1
1 + [Dσ (r)/D0

σ (r)]2
. (4)

Here,Dσ (r) is defined in Equation (3), whileD0
σ (r) is the

corresponding quantity for a homogeneous electron gas

D0
σ (r) = 25/3cFρσ (r)5/3, cF = 3

10
(3π2)2/3. (5)

Defined in this manner, the ELF is a dimensionless quan-
tity between 0 and 1. The upper limit fELF,σ (r) = 1 cor-
responds to perfect localisation, whereas fELF,σ (r) = 0.5

indicates behaviour close to that of a uniform gas with the
same density.

2.2. ELF in Kohn–Sham theory

The ELF as proposed for Hartree–Fock theory relies on
the definition of the conditional pair-density, Pσσ

cond(r, s),
for the interacting system. This quantity is not accessible
in the same manner in Kohn–ShamDFT, since the deter-
minantal wave function is then used to describe a system
of non-interacting electrons rather than to approximate
the physical system. On the other hand, Savin et al. [14]
noted that the leading term in Equation (3) is accessible
in Kohn–Sham theory, being related in a simple manner
to the Pauli kinetic-energy density:

τ Pauli
σ (r) = τσ (r) − τ vW

σ (r) = 1
2
Dσ (r) (6)

where

τσ (r) = 1
2

Nσ∑
i=1

|∇ϕiσ (r)|2, τ vW
σ (r) = 1

8
|∇ρσ (r)|2

ρσ (r)
,

(7)

The term τσ (r) is the σ -spin contribution to the non-
interacting kinetic-energy density in the everywhere-
positive gauge. Integration of this quantity over all space
yields the σ -spin component of the non-interacting
kinetic energy Ts used in Kohn–Sham theory. This form
reflects the fact that, althoughnon-interacting, theKohn–
Sham wave function is a single Slater determinant, pre-
serving the fermionic characteristics of the electrons.
The second term in Equation (6), τ vW

σ (r), is the von
Weizsäcker (vW) kinetic-energy density, which can be
interpreted as the kinetic-energy density for a system
of bosonic particles with orbitals proportional to √

ρσ .
The difference in Equation (6) can then be interpreted
as the change in the kinetic-energy density induced by the
Pauli principle. Since the von Weizsäcker kinetic-energy
density provides a lower bound on the non-interacting
kinetic energy density,

τσ (r) ≥ τ vW
σ (r), (8)

the Pauli kinetic-energy density is everywhere
nonnegative.

Given that τ Pauli
σ (r) contains the same information

as does Dσ (r), we may consider whether the ratio
Dσ (r)/D0

σ (r) required for fELF,σ (r) may be derived
from it. Savin et al. [14] noted that this can indeed
be achieved by using the kinetic-energy density of a
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MOLECULAR PHYSICS 1417

uniform electron gas

τUEG
σ (r) = 22/3cFρ5/3

σ = 1
2
D0

σ (r), (9)

yielding

Dσ (r)
D0

σ (r)
= τ Pauli

σ (r)
τUEG
σ (r)

. (10)

The ELF may then be interpreted as a measure of local-
isation that reflects changes arising from the fermionic
nature of the electrons and the satisfaction of the Pauli
principle. This observation goes a longway towards ratio-
nalising the practical utility of fELF,σ (r) for chemical
interpretation, bearing in mind that the Pauli principle
and its consequences govern many aspects of how chem-
ical phenomena may be interpreted. The Pauli princi-
ple leads to Fermi-correlation (exchange) effects between
electrons of the same-spin, which are typically an order of
magnitude larger than those between opposite-spin elec-
trons (dynamical correlation). As a result, the interpreta-
tion of same-spin interactions, as in ELF, can serve as a
useful qualitative tool for interpretation.

The ELF formula discussed above involves two sepa-
rate functions, one for each spin. Kohout and Savin [3]
proposed instead the spin-polarised form

fELF(r) = 1

1 +
(

τPauli
α (r)+τPauli

β (r)
τUEG
α (r)+τUEG

β (r)

)2 . (11)

We consider closed-shell systems, for which the values of
fELF(r) from Equations (4) and (11) are identical.

2.3. Extension of ELF tomagnetic fields

In a magnetic field, fELF(r) becomes gauge-dependent
through its dependence on the kinetic energy density τ ,
which itself is a gauge variant quantity (see [25,27,30–34]
for further discussion). This unphysical dependence can
be removed by introducing terms dependent on the para-
magnetic current density, such as those that arise in the
discussion of the spherical average of the exchange hole
by Dobson [30]. This can be accomplished either in the
expansion of Equation (3) or by replacing the first term
of Equation (6) according to

τσ → τ̃σ = τσ − |jpσ (r)|2
ρσ (r)

(12)

where jpσ (r) is the paramagnetic current density,

jpσ (r) = − i
2

occ∑
i

[
ϕ∗
iσ∇ϕiσ − ϕiσ∇ϕ∗

iσ
]
. (13)

This generalisation has previously been used to com-
pute time-dependent ELFs [35,36] and in the generalisa-
tion ofmeta-GGA functionals to calculate response prop-
erties perturbatively [27] and magnetic properties non-
perturbatively [25]. The latter implementation allows for
the self-consistent determination of molecular energies
and orbitals in a magnetic field using London atomic
orbitals [37–39] (also known as gauge-including atomic
orbitals (GIAOs)). We note that the gauge independent
kinetic energy density is not unique, and several other
forms have been proposed [32,34]. However, the choice
Equation (12) has the advantage that the kinetic energy
density is independent of the external magnetic field, as
well as satisfying Equation (8). These issues have previ-
ously been examined in the context of meta-GGA func-
tionals in [34]. Here, we use the cTPSS functional to per-
form calculations at a finitemagnetic field, computing the
generalised ELF as a function of field strength. Following
the notation cTPSS for the TPSS functional with the sub-
stitution in (12), we use the acronym cELF for the simi-
larly modified ELF.

3. Results

All cELF calculations use the London program [40,41]
with the CDFT implementation of cTPSS described in
[25] via the XCFun library [42] to determine the required
quantities for ELF at different field strengths. All calcu-
lations have been carried out in an uncontracted Carte-
sian aug-cc-pCVTZ basis set [43,44] of London atomic
orbitals [37]. Unless otherwise noted, zero-field TPSS
geometries are used.

3.1. Electron confinement

For a magnetic field of strength B along the z-axis, the
molecular electronic Hamiltonian takes the form (in
atomic units)

H = H0 + 1
2
BLz + BSz + 1

8
B2

∑
i

(
x2i + y2i

)
, (14)

where H0 is the unperturbed electronic Hamiltonian,
1
2BLz is the orbital Zeeman operator expressed in terms
of the orbital angular momentum operator Lz in the field
direction, BSz is the spin Zeeman operator expressed in
terms of the spin angular momentum operator Sz in the
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1418 J. W. FURNESS ET AL.

Figure . (Colour online) Perpendicular paramagnetic bonding in
He. The iso-volumes depict the regions of fELF � . at zero field
(blue – lighter) and in the presence of a perpendicular magnetic
field of strength B (red – darker). The system is considered at the
equilibrium geometry of R = .a as determined in a perpen-
dicular field of B= B.

field direction, and 1
8B

2 ∑
i(x

2
i + y2i ) is the diamagnetic

operator.
While theZeeman termsmay raise or lower the energy,

the diamagnetic term always raises the energy, becoming
dominant in a field stronger than one atomic unit B0 �
235 kT. From the form of the diamagnetic term, we see
that the field confines the system in the directions per-
pendicular to the field vector. As a result, the field exerts
a significant influence over the electronic structure and,
in particular, the localisation of the electrons.

... Paramagnetic bonding
We first consider the recently discovered phenomenon of
perpendicular paramagnetic bonding [28]. In Figure 1,
we present iso-volumes for He2 in a zero field (blue) and
in a uniform field of strength B0 perpendicular to the
internuclear axis (red). The bond distance of 2.864a0 has
been optimised at the cTPSS/u-aug-cc-pCVTZ level in
the same field. In [28], the paramagnetic bonding in He2
was rationalised in terms of induced electron rotation.
The bonding was further analysed at the Kohn–Sham
level in [25], in terms of molecular-orbital energies and
density distortions relative to non-bonded atoms in the
same field.

The confinement induced by the field, shown in red in
Figure 1, is clearly captured by the cELF. In the field, the
iso-surfaces contract around the atoms, becoming much
more compact in the perpendicular directions than in the
zero field (blue). Relaxation to the equilibrium geome-
try at zero field (not presented) gives similarly diffuse but
near-spherical zero-field ELF iso-surfaces.

... Covalent bonding
To illustrate the utility of the cELF in understanding
the features of covalent bonding in magnetic fields, we

Figure . (Colour online) The cELF for methane calculated at
the cTPSS/u-aug-cc-pCVTZ level at the corresponding zero-field
geometry. The blue iso-volumes depict the regions of fELF � .
in the absence of a magnetic field (blue – lighter) and in a field of
strength B (red – darker). The direction of the field is indicated by
the red arrow.

consider methane, ethane, ethene, and ethyne as pro-
totypical systems containing single, double, and triple
bonds. In Figure 2, the methane results are shown. In the
absence of a field, the blue iso-surfaces are consistent with
those obtained in earlier studies; in the presence of field,
the iso-surfaces around the atoms contract. The structure
of the cELF is similar for ethane (see Figure 3). An addi-
tional region of electron localisation is seen at the centre
of theC–Cbond both at zero field and atB= 0.4B0. As the
field increases, the localisation becomes less pronounced,
eventually splitting into two separate regions.

Figure . (Colour online) The cELF for ethane calculated at the
cTPSS/u-aug-cc-pCVTZ at the corresponding zero-field geometry.
The red iso-volumes depict the regions of fELF � . for .B
(upper left), .B (upper right), .B (lower left), and .B (lower
right). Field direction is indicated by the red arrow.
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MOLECULAR PHYSICS 1419

Figure . (Colour online) The cELF for ethene calculated at the
cTPSS/u-aug-cc-pCVTZ at the corresponding zero-field geometry.
The red iso-volumes depict the regions of fELF � . for .B
(upper left), .B (upper right), .B (lower left), and .B (lower
right). Field direction is indicated by the red arrow.

The zero-field ELF plots for ethene in Figure 4 are con-
sistent with those presented elsewhere [2], with a charac-
teristic dumb-bell shaped structure at the centre of the
C=C bond. With increasing field strength, the dumb-
bell structure splits into two, developing eventually into
two new structures with localisation above and below
the C=C bond. Around the hydrogen atoms, the cELF
surfaces of ethene contract in a manner similar to that
observed for methane and ethane.

Finally, in Figure 5, we present plots for ethyne. At zero
field, the ELF structure is similar to that reported else-
where [2], with a characteristic ring structure about the
triple bond. The ring is distorted at 0.1B0, splits into two
at 0.5B0, and eventually becomes reminiscent of that for
ethene at 1.0B0, with localisation above and below the
bond.

The features of the cELF observed here can help to
rationalise the success of the cTPSS meta-GGA func-
tional in strong fields relative to conventional GGA
functionals and also the local-density approximation
(LDA) (see [25]). In the cTPSS functional, the same
modification of Equation (12) is employed, entering
the functional via α(r) = [τ̃σ (r) − τ vW

σ (r)]/τUEG
σ (r) and

τ vW
σ (r)/τ̃σ (r). Note that α(r) contains the same infor-
mation as the cELF, to which it is related as fELF,σ (r) =
1/(1 + α2

σ (r)). Hence, α(r) also characterises the nature
of different bonding regions, vanishing in one-orbital
regions. However, it is not restricted to values between
0 and 1. The ratio τ vW

σ (r)/τ̃σ (r) also serves as a useful
indicator of one-orbital regions.

Our visualisations suggest that, as the field increases,
regions of large fELF(r) and low α(r) values distort con-
siderably. Since meta-GGAs are designed to minimise
one-electron self-interaction errors in these regions, the

Figure . (Colour online) The cELF for ethyne calculated at the
cTPSS/u-aug-cc-pCVTZ at the corresponding zero-field geometry.
The red iso-volumes depict the regions of fELF � . for .B
(upper left), .B (upper right), .B (lower left), and .B (lower
right). Field direction is indicated by the red arrow.

good performance of the cTPSS functional in strongmag-
netic fields observed in [25] may reflect an increased
importance of these regions.

3.2. Topological analysis

The function fELF is a continuous scalar field and can
therefore be subjected to a topological analysis simi-
lar to that used for the electron density by Bader [16].
This approach has been extensively used to highlight
the features of the ELF related to the chemical bonding
in systems at zero field. In particular, the positions of
attractors, which correspond to maxima of fELF, highlight
the regions of high localisation and are known to coin-
cide with traditional chemical notions of bonding [2].
Changes in the number and arrangement of attractors
in a magnetic field can therefore be indicative of deeper
changes in the electronic structure induced by the field.

The attractors for ethane (determined on a uniform
grid with spacing 0.05a0) are shown in Figure 3. At zero
field and 0.4B0, a single attractor is present at the cen-
tre of the C–C bond. As the field increases, two attrac-
tors appear along the C–C bond axis, reflecting two sep-
arate maxima in the cELF. In Figure 4, the central dumb-
bell shape of ethene encompasses two attractors. With
increasing field strength, new features evolve, with two
pairs of attractors appearing above and below the C=C
bond.

In Figure 5, the attractors for ethyne are shown, the
high symmetry of this system leading to a ring attrac-
tor about the bond. Amagnetic field perpendicular to the
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1420 J. W. FURNESS ET AL.

Figure . (Colour online) The physical current density (red stream lines) and the cELF (blue contours) of ethyne in the molecular plane
(left) and .a above it (right) in a perpendicular magnetic field of strength B.

bond axis destroys the linear symmetry, breaking the ring
attractor into two point attractors. At 0.5B0, two further
attractors appear above and below the C�C bond axis.
Finally, at 1.0B0, the cELF resembles that for ethene in
the same field, with attractors above and below the C�C
bond axis.

3.3. Physical current densities

The total physical current density j is the physically
observable electron current induced by the magnetic
field. It is related to the total paramagnetic current den-
sity that enters τ̃ = τ̃α + τ̃β (Equations (11) and (12)) and
hence the cELF by

j(r) = jp(r) + ρ(r)A(r), (15)

where the second term is the diamagnetic current, depen-
dent on the magnetic vector potential related to the phys-
ical field B as B = ∇ × A.

Visualisation of this quantity can aid with the under-
standing of the magnetic field’s influence on a system.
Figure 6 shows the physical current vector field superim-
posed over a cELF contour plot for ethyne at 1.0B0 in the
molecular plane (left) and 1.15a0 above it (right). The cur-
rent streamlines follow the structure of the cELF, circulat-
ing around the attractors and following contour regions
of high localisation. In this sense, the current plots are
complementary to the cELF, highlighting localised and
bonding regions in a field. However, unlike the cELF, the
current density vanishes in field-free DFT and is only of
interest in a magnetic field.

4. Conclusions

We have presented the current-ELF (cELF), a generalisa-
tion of the ELF to systems in magnetic fields. The cELF
constitutes a useful tool for understanding the nature
of changes in chemical bonding upon application of a
magnetic field. In systems bound by the perpendicular
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MOLECULAR PHYSICS 1421

paramagnetic bonding mechanism [28], such as He2, the
effects of the field in confining the electronic structure
in directions perpendicular to the field are particularly
evident. For covalently bound systems, the effects are
more subtle but the cELF provides a clear representa-
tion of field-induced changes in electronic structure, as
illustrated by application to methane, ethane, ethene and
ethyne. We expect cELF to become a useful tool for the
interpretation of changes in chemical bonding and reac-
tivity in magnetic fields.
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