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ABSTRACT
In their recent communication, Tao and Mo [Phys. Rev. Lett. 117, 073001 (2016)] presented a semi-local density functional derived from
the density matrix expansion of the exchange hole localized by a general coordinate transformation. We show that the order-of-limits
problem present in the functional, dismissed as harmless in the original publication, causes severe errors in predicted phase transition
pressures. We also show that the claim that lattice volume prediction accuracy exceeds that of existing similar functionals was based on
comparison to reference data that miss anharmonic zero-point expansion and consequently overestimates accuracy. By highlighting these
omissions, we give a more accurate assessment of the Tao–Mo functional and show a possible direction for resolving the order-of-limits
problem.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0008014., s

I. INTRODUCTION

Many of the advances that have developed the accuracy of
Kohn–Sham density functional theory (KS-DFT) have been real-
ized by designing approximations to the exchange-correlation (XC)
energy functional from theoretical analysis. This non-empirical
approach to functional design is commonly pursued by obeying con-
ditions known for the theoretical exact XC functional, termed exact
constraints, and the resulting functionals have enjoyed broad suc-
cess.1–6 A complementary approach to functional design, although
less well explored in recent years, has been to derive functionals
from models of the exact exchange hole.7,8 A recent advance in this
approach was made by Tao and Mo in Ref. 8 in which a new semi-
local density functional approximation for the exchange energy was
derived from a general coordinate transformation9 to the density
matrix expansion of the exact exchange hole.

The Tao–Mo exchange hole model was used to construct a
meta-generalized gradient approximation (meta-GGA) exchange
functional from the electron density, electron density gradient, and

the orbital kinetic energy density, τ(r) = 1/2∑occ.
i ∣∇ψi(r)∣2. The

resulting exchange energy density is combined with a modified
Tao–Perdew–Staroverov–Scuseria (TPSS) correlation functional5

with simplified spin polarization and re-parameterized to better fit
the exact exchange correlation energy of the one electron Gaussian
density. The resulting functional was denoted as “TM.” Combina-
tion of the new exchange functional with unmodified TPSS corre-
lation was also suggested and named “TMTPSS” (Tao–Mo–Tao–
Perdew–Staroverov–Scuseria).

The resulting non-empirical meta-GGA TM functional prop-
erly recovers the uniform electron gas, the slowly varying density
limit, and the iso-orbital limits. Its useful accuracy was established in
Ref. 8 against equilibrium 0 K lattice constants of 16 solids, alongside
atomization energies, Jellium surface energies, dissociation energies
of hydrogen bonded complexes, and cohesive energies of solids.

While the TM functional presents an intriguing advance for
building functionals from exchange hole models, it contains fun-
damental issues that limit its accuracy for some classes of prob-
lems. Here, we examine the order-of-limits problem and its impact
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on phase transition pressure prediction. We also show that the
TM functional’s accuracy for lattice constants was overestimated in
Ref. 8 due to the missing zero-point anharmonic expansion (ZPAE)
correction in the reference data used.

II. ORDER-OF-LIMITS PROBLEM
Like the earlier TPSS exchange functional,5 TM uses the dimen-

sionless meta-GGA indicator variable,

z(r) =
τvW
(r)

τ(r)
, (1)

where τvW(r) = |∇n(r)|2/(8n(r)) is the single orbital limit for the
kinetic energy. In TM, z(r) is used to identify single orbital and
slowly varying densities through the interpolation function,

w(r) =
z(r)2+3z(r)3

(1 + z(r)3)2 . (2)

A different iso-orbital indicator,

α(r) =
τ(r) − τvW

(r)
τUEG(r)

, (3)

where τUEG
(r) = (3/10)(3π2

)
2/3n(r)5/3 is the kinetic energy den-

sity of the uniform electron gas, occurs in the terms that recover
the fourth-order gradient expansion of the exchange energy. These
indicators are related as

z(r) =
1

1 + 3α(r)
5p(r)

, (4)

α(r) =
5p(r)

3
[

1
z(r)

− 1] (5)

through square of the reduced density gradient,

p(r) = s(r)2
=

∣∇n(r)∣2

4(3π2)2/3n(r)8/3
, (6)

=
3
5
τvW
(r)

τUEG(r)
. (7)

Other iso-orbital indicator functions are also known.10,11

Combined dependence on α and z introduces an order-of-
limits problem into TM that was first identified for TPSS in Ref. 12.
This problem was identified in the initial publication of TM8 but dis-
regarded as harmless. To the contrary, the order-of-limits problem
has been shown to be the leading cause of error in TPSS predictions
of phase transition pressures13 and we will show here that the same
is true for TM.

The order-of-limits discontinuity can be seen when the
enhancement factor, Fx [Eq. (11) of Ref. 8], is expressed in terms
of p and α using Eqs. (4)–(7). Taking the limit of p→ 0 followed by
the limit α→ 0 gives

lim
α→0
[lim
p→0
[Fx(p,α)]] = 1.0137, (8)

whereas reversing the order and taking the limit of α → 0 followed
by p→ 0 gives

lim
p→0
[lim
α→0
[Fx(p,α)]] = 1.1132. (9)

This discontinuity is shown graphically in Fig. 1, which plots the
TM exchange enhancement as a function of p and α. Following the
Fx[p = 0, α] and Fx[p, α = 0] edges, highlighted red, reveals the
discontinuity at Fx[p = 0, α = 0].

Reference 8 asserts that the discontinuity at p = α = 0 is not a
practical concern, stating that such behavior only occurs close to the
nuclei. This assertion is incorrect and important counter examples
are found at the center of stretched covalent single bonds.12–14 An
example of this is shown in Fig. 2, which plots Fx along the bond
axis of stretched Li2. The effect of the order-of-limits discontinuity
is clearly seen at the bond center (as well as at the nuclei) as down-
wards spikes caused by the exchange enhancement jumping between
the two limits. We were not able to converge the self-consistent field
cycle for stretched Li2 when using the LibXC15 implementation of
TM, while other meta-GGA functionals converged without trouble.
We rationalize this as the discontinuities at stretched bond centers
causing numerical instabilities. As a result, Fig. 2 is evaluated for
self-consistent PBE3 orbitals.

Far from being harmless, the order-of-limits problem was iden-
tified in Refs. 13 and 14 as the leading source of errors for TPSS in
crystal structure energy differences and in the cohesive energies of
insulating solids. We refer the reader to these publications for a full
analysis of effect of the order-of-limits problems on transition pres-
sures. The degradation of accuracy that the order-of-limits prob-
lem causes in the TM functional is clearly shown by comparing the

FIG. 1. The exchange enhancement factor for the TM functional of Ref. 8 as a
function of p and α. The order-of-limits discontinuity is visible at (0, 0). Edges p = 0
and α = 0 are highlighted in red.
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FIG. 2. The exchange enhancement factor of the TM functional8 along the Li2
internuclear axis evaluated for self-consistent PBE3 orbitals in the aug-cc-pVQZ
basis.16 Order-of-limits discontinuities are visible at the nuclei (indicated with
dashed vertical lines) and at the bond center z = 0.

accuracy for a small but representative set of phase transitions cal-
culated by TM, that suffers the order-of-limits problem, with those
calculated by the SCAN functional,6 which does not.

Table I summarizes the accuracy of transition pressure predic-
tions for a test set comprised of semiconductor–metal, metal–metal,
and semiconductor–insulator transitions for which thermal effects
are small enough to allow direct comparison between experimen-
tal and predicted results. All calculations were made following the
procedure of Ref. 17, using the Vienna ab initio simulation package
(VASP)18,19 with PBE projector augmented waves that include the
kinetic energy density component for B, N, Si, O, and C and fully
occupied d-shell electrons with kinetic energy density components
for Ga, As, Pb, and Ge. Gamma-centered Monkhorst–Pack k-mesh
was used throughout. The k-mesh point densities and cutoff energy
for the plane wave basis are detailed in Table S1 of the supplemental
material of Ref. 17 .

TABLE I. Transition pressures (GPa) for structural phase transitions. Mean error (ME)
and mean absolute error (MAE) are given relative to the experiment.20 Computational
details given in the main text.

SCAN TM Expt.20

Si 14.5 3.9 12.0
Ge 11.3 6.7 10.6
GaAs 17.1 8.2 15.0
SiO2 4.6 1.0 7.5a

Pb 16.4 10.0 14.0
BN 2.8 −1.2 5.0
ME 0.4 −5.9
MAE 2.1 5.9

aReference 21.

The order-of-limits problem causes the TM functional to
strongly underestimate the phase transition energy for every system
in the set, with qualitatively incorrect phase ordering seen for BN.
A similar performance for TPSS was reported in Ref. 14, which has
the same order-of-limits problem. In contrast, the SCAN functional
that does not suffer the order-of-limits problem predicts accurate
phase transition pressures for every system. This poor accuracy of
the TM functional stands in contrast to its good performance for lat-
tice constants, which are not so affected. Lattice constant accuracy is
discussed in Sec. III. We must therefore conclude that, contrary to
Ref. 8, the order-of-limits problem in TM cannot be dismissed as
harmless in all applications.

In principle, the order-of-limits problem could be removed
from the TM functional to make a revised-TM functional analo-
gous to the regularized-TPSS proposed in Ref. 13. The order-of-
limits problem stems from the interpolation function, Eq. (2), that
joins the slowly varying exchange enhancement factor to the density
matrix expansion exchange enhancement factor.8 If this interpola-
tion function were replaced by a function of α under the constraint
that

w(α = 1) = 0, (10)

then the order-of-limits problem would be resolved. The fourth
order gradient correction term, FSC

x in Ref. 8, should be suitably
modified to maintain the correct gradient expansion for the new
interpolation function.

As there is no simple mapping between z and α and functional
performance is likely to be sensitive to the exact nature of w(α),
deriving and testing a revised TM functional is expected to be non-
trivial and is beyond the scope of the current communication. Inspi-
ration for possible w(α) could be taken from other non-empirical
interpolation based meta-GGA functionals.6,22–24

III. ANHARMONIC CORRECTION TO LATTICE
CONSTANTS

Accurate prediction of lattice constants is an important indi-
cator of functional performance both as a measure directly relevant
to experiment and as a property that underpins many others. Direct
comparison of calculated lattice constants to experimental data is
complicated by zero-point phonon effects in the experimental data
that cause an ZPAE of measured lattice constants. The impact of
ZPAE was calculated in Ref. 25 and found to expand lattice constants
by around 0.015 Å (≈0.35%) for a set of 24 solids.

The experimental reference data used in Ref. 8 were obtained
by extrapolating finite temperature experimental lattice constants to
0 K. Extrapolating in this way implicitly includes anharmonic ZPAE
effects, so such data are not directly comparable with single point
electronic structure calculations in which the nuclei are treated with
harmonic potentials. Hence, neglecting to control for anharmonic
ZPAE introduced a small but systematic error into the assessment of
TM performance for lattice constants.

The original assessment in Ref. 8 was made from 13 bulk crys-
talline solids. This set includes main-group metals (Li and Al), semi-
conductors (diamond, Si, β-SiC, and GaAs), ionic crystals (NaCl,
NaF, LiCl, LiF, and MgO), and transition metals (Cu and Ag). Com-
parable SCAN data are available from Ref. 17 and are included here.
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TABLE II. Mean error (ME) and mean absolute error (MAE) for lattice constants (Å) of
13 bulk crystalline solids calculated with zero-point expansion (ZPAE) correction and
without (as used in Ref. 8).

ZPAE-Uncorrected ZPAE-Corrected

ME MAE ME MAE

SCAN −0.013 0.018 0.004 0.011
TM −0.001 0.012 0.015 0.019
TMTPSS 0.008 0.015 0.024 0.028

We repeat the analysis of Ref. 8 using reference data properly cor-
rected for anharmonic ZPAE, the results of which are presented in
Table II. Computational details follow those detailed in Sec. II.

The uncorrected reference data used in Ref. 8 indeed suggest
the conclusion that TM, and to a lesser extent TMTPSS, predicts
lattice constants with slightly higher accuracy than SCAN. The refer-
ence data with proper anharmonic ZPAE corrections show error of
this conclusion, however, with SCAN instead having slightly higher
accuracy than both TM and TMTPSS. The change in error statis-
tics following ZPAE correction is small but important given the
impressive accuracy of both TM and SCAN.

IV. CONCLUSION
While Ref. 8 presents an appealing non-empirical functional,

assessment of its performance was flawed in two important aspects.
First, the order-of-limits problem is more severe for TM than ini-
tially claimed and we have shown that it causes significant error
for transition pressure predictions. One route to revising the func-
tional to remove this problem is to redesign the interpolation func-
tion as a function of α, although this may require significant care
to ensure that the otherwise good performance is not lost. Second,
while both TM and TMTPSS make accurate predictions of lattice
constants, the lack of anharmonic ZPAE correction in the reference
data caused Ref. 8 to incorrectly conclude that TM is more accurate
than other meta-GGA functionals, such as SCAN, for this property.
When the assessment is repeated with properly ZPAE-corrected
reference data, the apparent accuracy is worsened with TM and
TMTPSS showing worse accuracy than SCAN, although we stress
that all three functionals are impressively accurate. Given the com-
pelling theoretical foundations of TM, we feel that the functional
would be well served by a revision that solves the order-of-limits
problem.
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