
Accurate and Numerically Efficient r2SCAN Meta-Generalized
Gradient Approximation
James W. Furness,* Aaron D. Kaplan, Jinliang Ning, John P. Perdew, and Jianwei Sun*

Cite This: J. Phys. Chem. Lett. 2020, 11, 8208−8215 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The recently proposed rSCAN functional [J. Chem.
Phys. 2019 150, 161101] is a regularized form of the SCAN
functional [Phys. Rev. Lett. 2015 115, 036402] that improves
SCAN’s numerical performance at the expense of breaking
constraints known from the exact exchange−correlation functional.
We construct a new meta-generalized gradient approximation by
restoring exact constraint adherence to rSCAN. The resulting
functional maintains rSCAN’s numerical performance while
restoring the transferable accuracy of SCAN.

There is a fundamental trade-off at the heart of all large-
scale chemical and material computational studies

between prediction accuracy and computational efficiency.
The level of theory used must simultaneously make accurate
and efficient material property predictions. For many projects,
Kohn−Sham density functional theory (KS-DFT) presents an
appealing compromise, delivering useful accuracy and favor-
able algorithmic complexity.
The Materials Project database presents a case study of

finding such a balance,1 stating an ambitious mission of
“removing the guesswork from materials design by computing
properties of all known materials”.2 At the time of writing, the
database lists 125 000 inorganic structures calculated from KS-
DFT using the Perdew−Burke−Ernzerhof (PBE) generalized
gradient approximation (GGA) exchange−correlation (XC)
functional.3 While GGA functionals can be impressively
accurate for many properties, they cannot be systemically
accurate for all properties,4−6 and the last 10 years have shown
that meta-GGA functionals can improve predictions for similar
computational cost.
Meta-GGAs are commonly designed around constraints

known for the exact XC functional while minimizing the
number of free parameters that must be fit. Functionals derived
in this way are termed “non-empirical,” and we refer the reader
to the Supporting Information of ref 7 for precise definitions of
all the exact constraints known for meta-GGAs. Alternatively,
the functional can be built from a more flexible form that
allows some exact constraints to be broken, so that free
parameters can be tuned for accuracy to reference data sets.
Functionals taking the latter route, termed “empirical”
functionals, tend to be less reliable for systems outside their

fitting sets, making a non-empirical functional desirable for
large-scale applications.
The strongly constrained and appropriately normed

(SCAN) functional7 recovers all 17 exact constraints presently
known for meta-GGA functionals and has shown good
transferable accuracy, even for systems challenging for DFT
methods. Examples include predicting accurate geometries and
energetics for diverse ice and silicon phases8 and for
polymorphs of MnO2.

9 SCAN accurately reproduces the
complex doping-driven metal−insulator transition, magnetic
structure, and charge-spin stripe phases of cuprate10−12 high-
temperature superconductors and iridates.13 It is one of the
few functionals that predicts ice as less dense than liquid water
under standard conditions,14 and its description of inter-
mediate range van der Waals interactions has been used to
study the dynamics of liquid water.14,15 Combination of SCAN
with beyond DFT techniques such as van der Waals
functionals and the Hubbard U self-interaction correction
have proven effective for modeling the ionic and electronic
structures of transition metal oxides.16−18

Despite these successes, SCAN’s utility for large-scale
projects is limited by its sensitivity to the density of the
numerical integration grid used during calculation. This poor
numerical performance in many codes mandates the use of
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dense integration grids which reduces SCAN’s computational
efficiency,19,20 and divergence in the associated XC potential
has hindered the generation of SCAN pseudopotentials.21,22

Neither limitation is inherent to the meta-GGA level or SCAN-
like functionals, as we will show.
Some modifications to SCAN have been proposed to

improve its accuracy for specific systems. The revSCAN
functional is a simple modification to the slowly varying limit
of SCAN’s correlation energy to eliminate the fourth-order
term in SCAN’s correlation energy density-gradient expan-
sion.23 The TASK functional is a complete revision of SCAN
designed to accurately predict band gaps while retaining the
exact constraints placed on the exchange energy,24 though
TASK uses a local spin-density approximation (LSDA) to
model correlation. It is not expected that these modifications
address the numerical inefficiencies of the parent functional.
In recent work, Bartoḱ and Yates propose a regularized

SCAN termed “rSCAN” that aims to control SCAN’s
numerical challenges while changing as little as possible from
the parent functional.22 The resulting functional shows greatly
improved numerical stability and enables pseudopotential
generation. While initial testing suggested that rSCAN
maintained the accuracy and transferability of SCAN,
expanded testing by Mejıá-Rodrıǵuez and Trickey25,26 shows
that some transferability is lost, with accuracy for atomization
energies27 particularly degraded.
The need for a computationally efficient revision of SCAN is

made plain in Figure 1. This figure shows three meta-GGAs:

SCAN and rSCAN, which have already been introduced, and a
novel meta-GGA, r2SCAN, that is the topic of this Letter. It
illustrates a grid problem that arises for SCAN in codes with
localized basis functions. The horizontal axis shows increasing
integration grid density, and the vertical axis shows the mean
absolute error (MAE) of the G3 test set28 of 226 atomization
energies. It would be difficult to assert that any of the grid
settings present a converged SCAN energy, with SCAN errors
varying unpredictably by a factor of 2. While rSCAN stabilizes
SCAN numerically, its error offers little improvement over
GGAs (e.g., PBE has a MAE of 22.2 kcal/mol7 for the G3 set).
The need for a meta-GGA that retains the accuracy of SCAN,
with the grid efficiency of rSCAN, is evident. No such grid

problem is found for SCAN in the plane-wave code VASP, as
shown in the Supporting Information. However, in VASP,
r2SCAN seems to converge with fewer iterations than SCAN
does.
The SCAN functional is constructed using a dimensionless

kinetic energy variable

r
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where τ = ∑i|∇ϕi|
2Θ(μ − εi)/2 is the positive kinetic energy

density; ϕi(r) are the Kohn−Sham orbitals; Θ(μ − εi) is the
orbital occupation; τW = |∇n|2/(8n) is the von Weizsac̈ker
kinetic energy density; τunif = 3(3π2)2/3n5/3/10 is the kinetic
energy density of a uniform electron gas; μ is the chemical
potential; and εi are the orbital energies. SCAN uses α to tune
functional performance for the local chemical environment.31

While α allows SCAN to satisfy exact constraints that would be
contradictory at the GGA level,32 α can introduce numerical
sensitivity and divergences in the XC potential.33,34

The design of rSCAN prioritizes numerical efficiency over
satisfaction of exact constraints and instead uses a regularized
α′
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where τr = 10−4 and αr = 10−3 are regularization constants.
While the choice of a constant τr eliminates numerical
instability as α → 0, α′ does not retain the correct uniform
and nonuniform scaling properties of α, nor the correct
uniform density limit.
For a uniform electron gas, α → 1, which SCAN uses to

recover the LSDA exactly. In rSCAN, α̃ → 1/(1 + τr/τunif)
which varies with the density, losing the correct uniform
electron gas description. It has been shown that recovery of the
uniform gas limit is critical for an accurate description of solids,
atoms, and molecules.35,36

For a slowly varying electron gas, the exchange and
correlation energies have well-known expansions in powers
of the gradient of the density. Let s = |∇n|/(2kFn), a
dimensionless density-gradient on the scale of the Fermi
wavevector kF = (3π2n)1/3, and q = ∇2n/(4kF

2n) a
dimensionless density-Laplacian. The gradient expansion for
the exchange energy per particle εx(r) is

37
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where εx
LDA = −3kF/(4π), p = s2, and μAK = 10/81. For the

correlation energy, following ref 3, we define an additional
dimensionless density-gradient t = |∇n|/[2ksϕ(ζ)n]
on the scale of the Thomas-Fermi screening wavevector
k k4 /s F π= . Here ϕ(ζ) = [(1 + ζ)2/3 + (1 − ζ)2/3]/2 is a
spin-scaling function of the spin-polarization ζ = (n↑− n↓)/n.
Then the density-gradient expansion of the correlation energy
per particle εc(r) is

3,7,38

r t( ) ( )c c
LSDA 3

s
2ε ε ϕ ζ β= + (5)

Figure 1. Mean absolute error (MAE) of atomization energies (kcal/
mol) for the G3 set of 226 molecules28 as a function of increasing
numerical integration grid density expressed relative to the smallest
grid. The grids were chosen from TURBOMOLE

29,30 grid levels 1−7.
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where β(rs) is a weakly varying function of the Wigner−Seitz
radius rs = (4πn/3)−1/3, with a maximum β(0) ≈ 0.066725.
The kinetic energy density τ has an analogous but unwieldy
density-gradient expansion.39 It is generally understood that
recovering the exact density-gradient expansion is relevant for
solids.40 These terms also affect the asymptotic behavior of Exc
for atoms,41 as the asymptotic limit for atoms of large-Z is a
semiclassical limit that is described exactly by the LSDA at
lowest-order, with the density-gradient terms modulating the
higher-order terms (known accurately).41 Thus, the uniform
and slowly varying density limits are relevant to both solid-
state and atomic systems.
SCAN eliminates erroneous contributions from α to the

second- and fourth-order slowly varying density-gradient
expansion (GE2 and GE4, respectively) of Exc by using a
nonanalytic switching function whose value and derivatives of
all orders are zero at α = 1. While theoretically convenient,
constraining the interpolation function to have zero derivatives
at α = 1 results in a twisted function that harms numerical
performance. The SCAN interpolation function was replaced
with a smooth polynomial in rSCAN (see Figure 2) to remove
this source of numeric instability, at the expense of introducing
second- and fourth-order contributions from α to the density-
gradient expansion of Exc.

It is clear then that rSCAN makes wide-ranging sacrifices in
exact constraint adherence in order to make a numerically
efficient meta-GGA. Here, we will show definitively that such
sacrifices are needless and derive revisions to the rSCAN
functional to restore exact constraint adherence without
harming numerical efficiency. We apply these revisions to

build a regularized−restored SCAN functional, r2SCAN, which
recovers the most important exact constraints of SCAN. Table
1 summarizes the constraint satisfaction of the functionals

concerned, and we stress that because only appropriate norm
systems7 were used to set the free parameters, all three
functionals (SCAN, rSCAN, and r2SCAN) may be considered
non-empirical. For brevity, we show only parts of the
functional that are modified in this work and direct the reader
to Section S2 of the Supporting Information for a full
definition of the relevant equations.
There are many situations where the exact exchange−

correlation potential and energy density can be expected to be
reasonably smooth (see, e.g., the plots of highly accurate
exchange−correlation potentials and energy densities of simple
hydrides in ref 42). In general, the exact Kohn−Sham
exchange−correlation potential need not be smooth, as
demonstrated by the Perdew−Parr−Levy−Balduz theorem:43

the exchange−correlation potential, as a function of the
number of electrons N, exhibits discontinuities across integer
values of N, with steps and peaks in the low-density region
between two separated dissimilar systems. However, a
semilocal functional cannot recover the precise behaviors of
the exact exchange−correlation energy and potential and
instead averages over them. Therefore, we consider smooth-
ness of the energy density and potential to be a necessary
construction principle of semilocal approximate density
functionals. A construction principle is any physically or
mathematically motivated principle that can supplement the
design of a first-principles density functional approximation.
The correct uniform- and nonuniform-scaling properties of

α, as well as the correct uniform density limit of Exc, are
recovered in r2SCAN by regularizing α as

W

unif W
α

τ τ
τ ητ̅ =

−
+ (6)

where η = 10−3 is a simple regularization parameter. Note that
because τ ≥ τW, α̅ has the same range as α, 0 ≤ α̅ < ∞. This is
distinct from the dimensionless kinetic energy variable
suggested by ref 34

W

unif
β

τ τ
τ τ
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−
+ (7)

which ranges between 0 ≤ β < 1 and has less rapidly varying
derivatives than α. As this work seeks revisions to SCAN, we
will not consider β or related iso-orbital indicators here and
adopt α̅ as the iso-orbital indicator used throughout r2SCAN.
SCAN uses the iso-orbital indicator variable α to drive

interpolation functions f x/c(α) for exchange and correlation.
The rSCAN functional replaces the original SCAN inter-
polation functions with a polynomial function of α′ when α′ <

Figure 2. SCAN (blue, solid) and rSCAN (red, dashed) interpolation
functions plotted for a generic stand-in iso-orbital indicator “Y” (α for
SCAN, α′ for rSCAN, α̅ for r2SCAN). The functions mix Y = 0
(single orbital) and Y = 1 (uniform density limit for α and α̅ ) energy
densities. The derivatives of the SCAN interpolation functions vanish
to all orders in Y at Y → 1, allowing SCAN to recover the appropriate
density-gradient expansions exactly in the slowly varying limit. The
rSCAN interpolation functions are used with Y = α̅ in r2SCAN, and
their smooth, nonvanishing first derivatives at Y = 1 necessitate
changes from SCAN to r2SCAN in the Y = 1 energy densities.

Table 1. Summary of Exact Constraint Adherence for a
Subset of the 17 Known Exact Constraints Applicable to
Meta-GGA Functionalsa

SCAN rSCAN r2SCAN

uniform density √ − √
coordinate scaling √ − √
GE2 √ − √
GE4X √ − −

aHere, GE2 denotes the second-order slowly-varying density-gradient
expansion, and GE4X denotes the fourth-order GE for exchange.
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2.5 that smooths out the plateau-like behavior of the original
near α = 1. The r2SCAN functional adopts the rSCAN
interpolation function but uses α̅ as the indicator variable. Both
the SCAN and rSCAN interpolation functions are shown in
Figure 2 as functions of a generic indicator.
The SCAN interpolation function was designed to have

vanishing derivatives at α = 1, but the rSCAN replacements go
linearly through zero at this point. As a result of these
nonvanishing derivatives, the interpolation function makes
spurious contributions to the slowly varying density-gradient
expansions that break the corresponding exact constraints. The
r2SCAN functional recovers the gradient expansions through

n( )2[ ∇ ] while using the rSCAN polynomial interpolation by
directly canceling spurious terms in the slowly varying energy
densities.
For exchange we recover the gradient expansion by replacing

the x(p, α′) function of SCAN and rSCAN with

x p C C p d p( ) exp /2x
2

p2
4

AKμ= { [− ] + }η (8)

Here, the constants Cη = 20/27 + 5η/3, depending on the α̅
regularization parameter η = 10−3, and C2x ≈ −0.162742
eliminate erroneous contributions from df x(α̅)/dα̅ at α̅ → 1,
and dp2 = 0.316 is a damping parameter determined as the
maximal value (therefore least damped) required to recover
SCAN’s error for the rare gas atom and jellium surface
appropriate norms described in ref 7. Replacing α′ with α̅ and
x(p, α′) with eq 8 in the rSCAN functional defines r2SCAN
exchange and restores the uniform density limit, correct scaling
properties, and GE2 for exchange (GE2X). As in ref 7 and
earlier work, we employ the exact spin-scaling equality for the

exchange energy;44 thus, only formulas for spin-unpolarized
exchange need to be displayed.
From eq 4, we see that a meta-GGA recovering GE4X must

either explicitly include the Laplacian of the density as an
ingredient or recover q-dependent terms via integration by
parts on τ. The latter method, used in SCAN, is theoretically
sound but likely introduces further numerical instabilities due
to an increased sensitivity to α. Furthermore, the gradient
expansion for the correlation energy is known only to second
order, and the relevance of GE4X (beyond GE2X terms) to
real systems has not been established. To ensure that our
functional is numerically stable we consider only GE2X here
and defer further discussion of GE4X and its difficulties to a
further publication in the near future.
The gradient expansion for correlation is known only to

second order, and we recover it by replacing the g(At2)
function which appears in the slowly varying correlation energy
density of rSCAN and SCAN with

g At y At y( , ) 1 4( )2 2 1/4Δ = [ + − Δ ]−
(9)
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Here Δy is the new term introduced in r2SCAN that eliminates
erroneous contributions from dfc(α̅)/dα̅ at α̅ → 1. Replacing
α′ with α̅ and g(At2) with eqs 9 and 10 in rSCAN correlation
defines r2SCAN correlation and approximately recovers GE2C.

Figure 3. (Top) Exchange−correlation enhancement factors; (middle-upper) iso-orbital indicator α(r), α′(r), or α̅ (r) as appropriate; (middle-
lower) semilocal part of the exchange−correlation potential as in eq 11; and (bottom) derivative of exchange−correlation energy density with
respect to kinetic energy density. Calculated for the xenon atom from accurate Hartree−Fock Slater orbitals48 for the SCAN,7 rSCAN,22 and
r2SCAN functionals. The VASP49−52 projector-augmented wave53 pseudopotential cutoff radius (2.5 Bohr) is illustrated by a dashed vertical line.
Solid vertical lines show where α = 1.
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In eq 10, Δfc2 ≈ − 0.711402 and γ = (1 − ln 2)/π2 ≈ 0.031091
are constants; all other quantities are functions defined in the
Supporting Information. The correlation gradient expansion of
r2SCAN becomes exact whenever |∇ζ| = 0 and approximately
recovers GE2C for all other values of ∇ζ. Thus, r2SCAN
recovers GE2C exactly for spin-unpolarized systems, where the
correlation energy is likely most negative, and for fully spin-
polarized systems, where the correlation energy is likely least
negative. Between these limits, the r2SCAN correlation
gradient expansion is a reasonable approximation to the true
gradient expansion.
These modifications should not degrade the good numerical

performance of rSCAN. Their effect can be seen in Figure 3,
which compares the XC enhancement factor and XC potential
components of SCAN and r2SCAN for the xenon atom. The
implicit orbital dependence of τ-dependent meta-GGA func-
tionals prevents direct evaluation of a multiplicative KS
potential, and such functionals are more commonly imple-
mented using derivatives with respect to individual orbitals in a
generalized Kohn−Sham scheme.45−47 Let ϵxc = nεxc be the XC
energy density. We can identify a multiplicative component of
the potential

v
n n

n
n

r
r

r
r
r

r
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and summarize the nonmultiplicative component as the
derivative of the energy density with respect to τ. Both are
shown in Figure 3.
While the overall intershell features of the Fxc are similar

between the two functionals, SCAN shows plateaus where α =
1, while r2SCAN is smooth throughout. This behavior is
echoed as sharp oscillations in both the multiplicative potential
component and nonmultiplicative τ derivative for SCAN,
which contrasts with the smooth equivalents for r2SCAN. We
suggest that r2SCAN may make generation of meta-GGA
pseudopotentials feasible. Note that on the scale of Figure 3
both α and α̅ appear to diverge. While it is true that α diverges,
the η regularization parameter ensures α̅ remains finite, with a
final maxima occurring around 8 Bohr after which it
asymptotically approaches 0. Larger values of η cause the
asymptotic return to occur closer to the nuclei but cause the
regularization to have a greater impact on predicted energies.
We defer detailed discussion of η and single-orbital system
potential divergence to Supporting Information Section S3.
Reference 25 shows that atomization energies are partic-

ularly problematic for rSCAN, with its error being roughly
twice that of SCAN’s. As such, we take the G3 set of 226
atomization energies28 as a primary means of assessing the

effect of constraint restoration. Table 2 summarizes the
accuracy of the functionals for the G3 set using the most
dense grid available. We find that the error for rSCAN is
roughly twice that of SCAN, consistent with other studies. The
new r2SCAN functional shows similar accuracy to SCAN,
supporting the importance of exact constraint adherence.
We restate that the improved numerical efficiency of

r2SCAN is immediately apparent from Figure 1, which shows
accuracy for the G3 test set as a function of integration grid
density. r2SCAN shows consistent error with grid density,
similar to rSCAN and in sharp contrast to SCAN. This figure
should stand as a stark warning that studies comparing total
energies from SCAN must carefully test for grid convergence
and shows the utility of the new regularized−restored
functional which achieves consistently good accuracy with
even the smallest grids.
The transferablility of the new functionals was further tested

for 76 reaction barrier heights,54 22 weak interaction
energies,55 and 20 lattice constants,56 with error statistics
summarized in Table 2. All SCAN derived functionals show
similar performance across the test sets, with the exception of
the G3 atomization energy set as discussed above. The LC20
set was assessed by fitting the stabilized jellium equation of
state (SJEOS)57,58 to single-point energies at a range of lattice
volumes around equilibrium.
We recently learned of a “de-orbitalization”62−64 of our

r2SCAN that replaces the exact orbital-dependent Kohn−Sham
kinetic energy density τ by a posited function of n, ∇n, and
∇2n, called “r2SCAN-L”.65 This speeds up computations while
somewhat reducing overall accuracy, though interestingly the
accuracy of the magnetic moment of metallic Fe is restored by
the deorbitalization to the good level of LSDA and PBE. As a
possible explanation, we note that the exact τ has a fully
nonlocal dependence upon the electron density n that is
needed to satisfy some exact constraints and is probably
needed for optimal accuracy in atoms, molecules, and
insulators. This full nonlocality may however be somewhat
harmful for metals, where metallic screening can favor truly
semilocal approximations to the valence−valence exchange−
correlation energy.
We have presented r2SCAN as a functional combining

SCAN’s transferable accuracy from exact constraint satisfaction
with rSCAN’s numerical efficiency. r2SCAN satisfies the most
important exact constraints of SCAN. In our future work, we
will assess the importance of the GE4X terms beyond GE2X
(recovered by SCAN, but not by r2SCAN) as an exact
constraint. We draw this conclusion from the competitive
accuracy shown for the diverse test sets of Table 2 and the
rapid grid convergence of Figure 1. The XC potential analysis

Table 2. Mean Error (ME) and Mean Absolute Error (MAE) of TPSS,59 SCAN,7 rSCAN,22 and r2SCAN for the G3 Set of 226
Molecular Atomization Energies,28 the BH76 Set of 76 Chemical Barrier Heights,54 the S22 set of 22 Interaction Energies
between Closed Shell Complexes,55 and the LC20 Set of 20 Solid Lattice Constants56a

G3 BH76 S22 LC20

ME MAE ME MAE ME MAE ME MAE

TPSS −5.2 5.8 −8.6 8.6 −3.4 3.4 0.033 0.041
SCAN −5.0 6.1 −7.7 7.7 −0.5 0.8 0.009 0.015
rSCAN −14.0 14.3 −7.4 7.4 −1.2 1.3 0.020 0.025
r2SCAN −4.5 5.5 −7.1 7.2 −0.9 1.1 0.022 0.027

aErrors for G3, BH76, and S22 sets are in kcal/mol, whereas errors for LC20 are in Å. We did not make corrections for basis set superposition error
for the S22 set which used the aug-cc-pVTZ basis set.60 All calculations for G3 and BH76 used the 6-311++G(3df,3pd) basis set.28,61 Details of the
computational methods are included in Section S1 of the Supporting Information.
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from Figure 3 suggests that r2SCAN will be preferable when a
smooth potential is critical. In particular, it should now be
more practical to construct a pseudopotential and to evaluate
the second functional derivative which can play the role of an
exchange−correlation kernel in time-dependent density func-
tional applications. We expect the new regularized−restored
SCAN functional to bridge the gap between accuracy and
numerical efficiency and enable meta-GGA use in large-scale
computational studies.
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