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The lowering of reaction overpotentials is a persistent and universal goal in the development of catalysts
for (photo)electrochemistry, which can usually be facilitated by selectively stabilizing one reaction inter-
mediate over another. In this mechanistic study of the oxygen evolution reaction (OER) catalyzed by
cobalt-intercalated layered MnO,, we show that confinement effects and local cobalt atomic ordering
in the interlayer space can be synergistically used to tune the adsorption energies of O, OH, and OOH
reaction intermediates and the scaling relationship between them. In general, the interlayer confinement
destabilizes the adsorption of intermediates for the OER, but clustering Co atoms can selectively stabilize
the adsorption of OOH in particular. After considering both effects, our model predicts an overpotential of
0.30V for the Co-intercalated MnO, catalyzed OER, in excellent agreement with the experimental result
of 0.36 V. These new insights explain the enhanced catalytic performance of MnO,, by intercalating atoms
and illuminate a route for engineering non-toxic precious-metal-free catalysts through designed layered

materials.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The conversion of solar energy into chemical fuels is a promis-
ing way to transition from the current unsustainable use of fossil
fuels towards a sustainable economy [1-3] of hydrogen-based
fuels. A key step towards this goal is the efficient and economical
splitting of water into H, and O, [4-6]. Water splitting involves
two half reactions, the hydrogen evolution reaction (HER) and
the oxygen evolution reaction (OER), the latter of which is typically
rate-determining and requires high-performance catalysts. Current
high-performance OER catalysts often are comprised of precious
metal oxides, such as RuO, and IrO, [7], whose prohibitive costs
prevent their economic viability for commercial applications. Con-
sequently, much effort is devoted to developing highly active OER
catalysts from nonprecious elements, with transition metal oxides/
hydroxides (especially Ni, Co, Fe, and Mn) [8-15], chalcogenides
[16-18], phosphates [19-22], and perovskites [23] showing con-
siderable promise. Among the potential candidates is birnessite,
an earth-abundant non-toxic layered mineral composed of edge-
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sharing MnOg octahedra and an interlayer of hydrated cations with
a general formula AMn,40g-3H,0 (A = alkali and alkaline earth met-
als e.g. K, Na, Ca) [24-27]. The structural motif of birnessite shows
a similarity to the oxygen evolution centre Mn4CaOs cubane con-
figuration of photosystem II (PS II) [28-30], nature’s own choice
for water splitting and solar energy harvesting. Although birnessite
exhibits only moderate activity towards the electrocatalytic OER
reaction, multiple engineering techniques are available to improve
its performance [31-36]. By intercalating birnessite with cobalt
ions, an excellent catalytic performance with the overpotential of
0.36 eV has been reported [35].

Despite the progress made in birnessite OER catalyst design, a
detailed understanding of the catalytic mechanism for the interca-
lated birnessite systems remains elusive and stands as a severe lim-
itation to further development. First-principles calculations based
on density functional theory (DFT) provide a powerful tool for inves-
tigating catalytic mechanisms, allowing both an explanation of
experimental findings as well as a computational screening of candi-
date catalysts that is much more efficient than the traditional “trial
and error” experimental approach. Pioneering first-principles work
by Narskov and collaborators [37,38] established the importance of
scaling relationships between adsorption energies of different
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Fig. 1. The geometric models for the Co-intercalated layered MnO, without reaction intermediates for (a) InterL and (b) Co-pair models. Spectator atoms are identified as H
(white), O (red), Co (blue), and Mn (purple). Unit cell used for calculations is indicated by a black box.

reaction intermediates in finding catalytic mechanisms and design-
ing novel catalysts [39-42]. These scaling relationships result in a
volcano-shaped curve of catalytic activity versus adsorption energy
of a particular reaction intermediate, with activity improving
towards the apex of the volcano [39-41]. However, the volcano’s
apex sets an upper bound on the catalytic activity [43-45]. Several
strategies have been proposed to circumvent the scaling relation-
ship by selectively stabilizing key reaction intermediates [46],
achieved through the use of bifunctionality [47,48], promotors,
ligands, electrolyte choice [49-51], engineering three-dimensional
active sites at interfaces [52-54], and confined interlayer space
[55]. In this work, we take the Co-intercalated layered MnO, birnes-
site as a prototypical case and show that layered materials with
intercalated atoms facilitate intricate atomic interactions in the
unique environment of the interlayer space. The atomic interactions
within the interlayer enable a synergy of multiple selective stabi-
lization mechanisms of key intermediates, and thus high tunability
and improvement in catalytic performance for water oxidation.

2. Methods
2.1. Computational methods

In this work, we carry out density functional theory [56] calcu-
lations using the Vienna Ab-initio Simulation Package (VASP) [57]
with the projector-augmented wave (PAW) method [58,59]. The
recently developed strongly-constrained and appropriately-
normed (SCAN) meta-GGA [60,61] is used for its superior perfor-
mance in description of different chemical bonds and transition
metal compounds [60-65]. A long range van der Waals correction
is combined with SCAN through the rVV10 nonlocal correlation
|66], a revised form of VV10, the Vydrov-Van Voorhis non-local
correlation functional [67]. The PAW method is employed to treat
the core ion-electron interaction and the valence configurations
are taken as Mn: 3p®4s'3d®, O: 2s%2p* Co: 3d®4s' and H: 1s'. An
energy cutoff of 520 eV is used to truncate the plane wave basis.
We use I'-centered meshes with a spacing threshold of 0.2 A~!
for K-space sampling. Geometries of the reaction models were
allowed to relax until the maximum ionic forces were below a
threshold of 0.02eVA~!. Calculations for surface reactions
employed a dipole moment correction, to correct for residual
dipole moments perpendicular to the surface.

2.2. Model geometries

Two initial structures were employed to construct the interme-
diate models for study of the effect of confinement and local Co

Table 1
The employed oxygen-evolution reaction mechanism and energetics. * stands for a
reaction site of the catalyst.

Step Chemistry Limiting potential (eV)
R1 H,0+* > HO*+e +H" AG; =Gon

R2 HO* - O*+e +H" AG, =Go-Gon

R3 H,0 + 0* > HOO*+e~ +H" AG3 =Goon-Go

R4 HOO* —» *+0,+e” +H" AG4 =4.92-Goon

atom ordering of the Co intercalated layered birnessite, and the ini-
tial structures are illustrated in Fig. 1. The interlayer (InterL) model
contains intercalated Co atoms that are well separated from each
other. The basic InterL structural unit is similar to the triclinic
phase of birnessite [24] and is shown in Fig. 1(a). This structure
was chosen as a starting point for reaction modeling, with a gen-
eral unit cell formula of MMn4Og-3H,0 (M = transition or alkali
metal). In contrast to typical triclinic birnessite, the structural unit
employed here places the interlayer atom (Co) at a position inter-
acting with six O atoms, 3 from the MnO, layer and 3 from inter-
layer water molecules, forming an octahedron. Relaxing the ionic
positions of this model using the SCAN +rVV10 functional gives
an interlayer distance of 7.08 A, close to the experimental inter-
layer distance of ~7.2 A [35]. We generate an active site, denoted
as “*” in Table 1 for OH, O and OOH intermediates, by removing
the water molecule in the left of the unit cell (black box in Fig. 1
(a)). The structures of the *OH, *O and *OOH intermediates are
shown in Fig. 2(b). Surface reactions in the absence of confinement
are modeled by increasing the interlayer distance to about 30 A to
model a monolayer system (MonoL).

The cobalt-pair model (Co-pair) shown in Fig. 1(b) involves two
neighboring edge-sharing Co octahedrons. Note an OH connecting
the Co pair is used instead of a water molecule. Removing the
water molecule in front of the OH generates the corresponding
“*” site for OH and O intermediates, while the active site for OOH
intermediates involves an additional removal of the left front
water molecule in the unit cell (black box in Fig. 1(b)). The struc-
tures of the *OH, *O and *OOH intermediates in the Co-pair model
are shown in Fig. 2(c). The models (MonoL, InterL and Co-pair) are
constructed such that they have an Mn:Co molar ratio of 4:1, sim-
ilar to the experimental Co concentration [35]. This also disentan-
gles the effect of Co concentration from those of the confinement
and local atomic ordering. The study of Co concentration effect
on the catalytic performance is interesting, which however is out
of the scope of this paper. For details of the electronic structures
of the intermediates, refer Table S8 (bandgap) and Fig. S4 (density
of states) in supplementary material.
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Fig. 2. Relaxed geometries of *OH, *O and *OOH intermediates and calculated OER free energy diagrams of different models revealing the intrinsic atomic interactions in the
Co-intercalated layered MnO,. (a) The Co-decorated MnO, monolayer model (MonoL) with both top view (upper panel) and side view (bottom panel), (b) the Co-intercalated
layered MnO, model with well separated Co-Co distances (InterL), (c) the Co-pair model (Co-pair) where the nearest Co atoms form Co pairs. Oxygen and hydrogen of reaction
intermediates are highlighted green and cyan, respectively. Spectator atoms are identified as H (white), O (red), Co (blue), and Mn (purple). The black boxes indicate the unit
cell size used for calculations. The vacuum space of the MonoL model is omitted in the plot for simplicity. (d) Calculated OER free energy diagrams of the MonoL model (red),
the InterL model (blue), and the Co-pair model (black). The theoretical ideal path is included for reference (dotted, black).

Our model of aqueous birnessite remains a simplified system,
and a more detailed model would include Co adsorbates on both
sides of each MnO, layer. We adopt the simplified single-side Co
adsorbate model here because it significantly reduces the compu-
tational cost of the calculations, while still presenting a reasonably

good model for investigations of the interlayer distance depen-
dence of the adsorption energy and OER overpotential, where the
monolayer case is approached at large interlayer distance. The
single-side adsorbate model omits interactions between interme-
diates adsorbed on Co atoms of neighboring MnO, layers, which
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may also play an active role in enhancing catalytic performance by
stabilizing OOH over OH intermediates. However, a study of these
effects is beyond the scope of this work.

Detailed structural information (lattice constants, angles, and
interlayer distances, and bonding geometries) can be found in
Tables S5-S7, and POSCAR files in supplementary materials. Note
that Co has a general +2 oxidation state, while Mn have +3 or +4
oxidation states, see Table S9 of supplementary materials.

2.3. Thermodynamics for water oxidation

The water splitting reaction is endothermic with an unfavorable
4.92 eV change in Gibbs free energy. With an ideal catalyst the
Gibbs free energy diagram for the elementary reaction steps would
be evenly spaced, as shown in Fig. 2(d), requiring an external
potential of 4.92 eV/4e =1.23V to make each step spontaneous.
In reality however, even the catalyzed reaction has an unevenly
spaced Gibbs free energy diagram, requiring a larger potential than
the ideal 1.23 V for some reaction steps. The theoretical overpoten-
tial is defined as the lowest excess potential at which all reaction
steps are thermodynamically downhill and is given by the
equation:

Noer = [MaxX (Gou, Go — Gou, Goon — Go,4.92 — Goon) — 1.23eV]/e,

where the Gibbs free energy (G) is related to the electronic energy
(E), zero-point energy, and the entropic contribution. The OER
was modelled assuming the four-step mechanism described in
Table 1.

The computational hydrogen electrode method [37], defined as
the energetic gain (or loss) by exchange of water and proton/elec-
tron pairs from an implicit solvent, was used to calculate adsorp-
tion energies of reaction intermediates and describe intermediate
thermodynamics analogous to the reversible hydrogen electrode
(RHE). Computational hydrogen electrode calculations remain con-
stant for all pH values. Although the acidic and basic OER pathways
are different mechanistically, they are equivalent from a thermo-
dynamic perspective. To model the thermochemistry of the OER,
we adopt acidic conditions and follow the reaction scheme (R1-
R4) given in Table 1. Surface adsorption energies of intermediates
are obtained according to

AEoy = E.on + 0.5Ey, — E. — Eny0
AEy =E.o+En, —E. — Enyo

AEoon = E.oon + 1.5En, — E. — 2En,0

The Gibbs free energies of *O, *OH, and *OOH (Go, Gon, and
Goon) defined in Table 1 are obtained by adding the zero-point
energy and entropic corrections to the respective adsorption ener-
gies (AEo, AEoy,and AEqoy), as described in Ref. [37]. The Gibbs free
energy of the full reaction was fixed to the experimentally mea-
sured value of 4.92 eV [68]. The adsorption energies are presented
in Table 2.

Zero-point energies (ZPE) were calculated from vibrational fre-
quencies using finite differences and the selective dynamics
method, allowing for displacements of only atoms of the interme-
diate OH, O and OOH. Our calculated ZPE values presented in
Tables S2 and S3 are close to those of a similar system studied
by Nerskov and coworkers [69].

3. Results and discussion

In comparison to the theoretical ideal catalyst, Fig. 2 shows that
the Co-decorated MnO, monolayer (red, the MonoL model) over-
stabilizes the bound intermediates *OH, *O, and *OOH. In contrast,

Table 2
Calculated adsorption energies (in units of eV) of the *OH, *O and *OOH OER
intermediates within the MonoL, InterL, and Co-pair models.

Intermediates Co-pair InterL MonoL
OH 0.18 -0.31 -1.38
0] 2.06 1.77 0.22
OOH 2.90 3.09 1.94
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Fig. 3. Calculated interlayer-distance-dependence of the reaction free energies of
(R1-R4) and overpotential of OER (dotted) for the Co-intercalated MnO,. Interlayer
distance is taken as the vertical distance of neighboring Mn atomic layers. Detailed
structural information for bonding evolution can be found in Fig. S1 in supplemen-
tary materials.

the spatial confinement provided by the interlayer region of Co-
intercalated MnO, significantly destabilizes these intermediates
(blue, the InterL model), consistent with previous studies of layered
systems [55,70]. Confinement reduces the overpotential from
1.30V of the Co-decorated MnO, monolayer to 0.53 V. The origin
of this beneficial destabilization is reflected by the geometric
changes of the intermediates due to confinement, highlighted by
*OOH that is adsorbed on one sheet, but repelled by oxygen atoms
in the opposing MnO, layer (i.e., the non-adsorbing side), as shown
in Fig. 2(b).

The monolayer case can be regarded as a layered MnO, in the
limit of an infinite interlayer distance. Therefore, it is reasonable
to expect that there exists an optimal interlayer distance that min-
imizes the overpotential, given that the intermediates are over-
stabilized by the monolayer and destabilized by confinement.
Fig. 3 shows the OER reaction free energies of elementary steps
and overpotential as functions of the interlayer distance. An opti-
mal distance is identified at 7.38 A, with an overpotential of
0.53V, such that confinement reduces the overpotential by
0.77 V in comparison to the monolayer extreme and essentially
the same as that of the Co-intercalated layered MnO, calculated
at equilibrium (the InterL model of Fig. 2(d)). Our result is consis-
tent with a theoretical study on confinement effects in RuO, lay-
ered materials of Ref. [55], which predicted a similar 0.3V
reduction in overpotential for the OER through confinement
effects.

The optimal distance is close to the equilibrium distances of 7.2
to 7.5 A predicted for different intermediates (see the supplemen-
tary materials) and is also consistent with experimental results
(~7.2 A) [35], indicated by the shaded area in Fig. 3. As the layered
MnO, is compressed, the rate-determining AG; from *O to *OOH
increases dramatically because *OOH is destabilized significantly
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more than *0. On the contrary, when the interlayer distance is
expanded from the experimental equilibrium distance, *OOH is
stabilized more than *O, resulting in a smaller AG; and a lower
overpotential. As the interlayer distance increases further from
the optimal distance of 7.38 A, *OOH becomes too stable and the
formation of O, in step 4 becomes the rate-determining step, lead-
ing to an increase in the overpotential for the OER. Step 4 remains
rate-determining for interlayer distances larger than the optimal
one, consistent with the monolayer extreme where step 4 is rate-
determining.

One interesting feature in the overpotential curve is the second
minimum appearing at the interlayer distance around 8.5 A,
reflecting a destabilization mechanism for the OOH intermediate
that is the only relevant one for AG4. The destabilization is likely
due to breakage of the hydrogen bond between OOH and the
opposing MnO, layer (see the supplementary materials for the
hydrogen bonding analysis), whose competition with the stabiliza-
tion due to the larger interlayer distance results in the second min-
imum in the overpotential. The calculated change in overpotential
with respect to the interlayer distance for the Co-intercalated lay-
ered MnO, shown in Fig. 3 is consistent with experimental obser-
vations for alkali metal-intercalated layered MnO,, whose catalytic
performance depends on the interlayer distance as tuned by the
ionic radius of intercalated cations [71]. It was found experimen-
tally [71] that Cs*/bilayer MnO,, with an equilibrium interlayer
distance around 11 A and an overpotential of 0.47 V, has better cat-
alytic performance than K*/bilayer MnO,, whose equilibrium inter-
layer distance was about 7 A and an overpotential 0.21V higher
than the Cs™ system. For these experimental results, the second
minimum in overpotential of Fig. 3 might be more relevant, but a
detailed study of this is beyond the scope of this work.

Confinement effects alone cannot explain the performance of
Co-intercalated layered MnO, for OER, because the excellent cat-
alytic activity is experimentally observed at an interlayer distance
of ~7.2 A with an overpotential of 0.36 V, much lower than the
optimal 0.53 V of Fig. 3. There likely exists a different mechanism
that can selectively stabilize one intermediate over the others. As
*OOH contains an additional O atom compared to *O, it is natural
to expect that *OOH can be further stabilized by forming bonds
with the catalyst from both its O atoms. Therefore, we propose a
strategy for the selective stabilization of *OOH: the formation of
cobalt pairs (termed the Co-pair model).

In the Co-pair model, each Co atom in the pair interacts with
one O atom of an OOH intermediate. The bond length of the Co pair
is ~3.3 A, to be compared with ~5.0 A between two nearest Co
atoms in the InterL model, as illustrated in Fig. 2. The O-O bond
length of *OOH intermediate in the Co-pair model is 1.51 A, almost
the same as that in the monolayer surface model (1.50A) and
slightly larger than that in the interlayer model (1.47 A). See
Table S6 of supplementary material. The Co-pair model follows a
similar mechanism to the COOH selective stabilization proposed
in Ref. [72], and can also be considered as a special case of the pro-
motor mechanism for OOH stabilization described in Ref. [46].
Moreover, two-metal-ion catalysis is a common motif in enzymatic
processing of DNA and RNA [73], and our model suggests a gener-
alization of this functional arrangement of ions to non-biological
systems. As shown in Fig. 2(d), compared to the InterL model,
the Co-pair model stabilizes *OOH as expected while destabilizing
*0 and *OH, resulting in an overpotential of 0.30 V that is in excel-
lent agreement with the experimentally determined 0.36V [35].
The destabilization of *O and *OH is due to smaller interlayer dis-
tances (~7.15 A) in the Co-pair model than in the InterL model (7.2
to 7.5 A), consistent with the confinement effect found in Fig. 3. We
therefore attribute the experimentally found improvement of lay-
ered MnO, catalytic behavior by Co intercalation to a synergy
between confinement effects and local atomic ordering. When

we expand the interlayer distance of the Co-pair model to essen-
tially create a surface model with Co pairs and thus remove the
confinement effect, the intermediates are all overstabilized, result-
ing in a high overpotential (~1.0 V), comparable to 1.30V of the
MonoL model (See Fig. S3 of supplementary material). We note that
reactivity may also be altered through enhanced thermal fluctua-
tions of water molecules near the Co pair [36,74], relative to the
InterL model, but such fluctuations are ignored in our calculations.
It is also noteworthy that the current proposed Co-pair model is
only one example of many possible transient or metastable inter-
calant ordering configurations for selective stabilization of *OOH,
the only requirement being an ability to coordinate a double Co-
O bonding pattern. It is also possible that Co atoms form substitu-
tion defects and alter the electronic structure of MnO,, and hence
its catalytic performance [75].The detailed mechanism for the cat-
alytic activity of the Co substituted birnessite, and its interplay
with the Co intercalation, remains an open question, and we may
examine them in future work.

4. Conclusions

In summary, by analyzing the elementary reaction steps of
water oxidation in Co-intercalated layered MnO,, we reveal that
the underlying atomic interactions in the interlayer region of inter-
calated layered materials can create versatility and lead to catalytic
improvements. We also highlight the idea of synergistically using
multiple selective (de)stabilization mechanisms for catalyst design
and tunability of catalytic performance. This understanding
explains several experimental observations and has the potential
to accelerate the design of novel non-toxic precious-metal-free cat-
alysts through interlayer engineering of layered materials.
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