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We present a novel implementation of Kohn–Sham density-functional theory utilizing London atomic
orbitals as basis functions. External magnetic fields are treated non-perturbatively, which enable the
study of both magnetic response properties and the effects of strong fields, using either standard den-
sity functionals or current-density functionals—the implementation is the first fully self-consistent
implementation of the latter for molecules. Pilot applications are presented for the finite-field calcula-
tion of molecular magnetizabilities, hypermagnetizabilities, and nuclear magnetic resonance shield-
ing constants, focusing on the impact of current-density functionals on the accuracy of the results.
Existing current-density functionals based on the gauge-invariant vorticity are tested and found to be
sensitive to numerical details of their implementation. Furthermore, when appropriately regularized,
the resulting magnetic properties show no improvement over standard density-functional results. An
advantage of the present implementation is the ability to apply density-functional theory to molecules
in very strong magnetic fields, where the perturbative approach breaks down. Comparison with high
accuracy full-configuration-interaction results show that the inadequacies of current-density approxi-
mations are exacerbated with increasing magnetic field strength. Standard density-functionals remain
well behaved but fail to deliver high accuracy. The need for improved current-dependent density-
functionals, and how they may be tested using the presented implementation, is discussed in light of
our findings. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861427]

I. INTRODUCTION

Accurate and efficient calculation of magnetic proper-
ties is an important challenge for quantum-chemical meth-
ods. The effects of the magnetic fields available in laboratory
experiments tend to be very weak compared with the natu-
ral energy scale for a small molecule, and so the dominant
approach to the calculation of molecular magnetic properties
has relied on the use of perturbation theory.1, 2 Both static and
dynamic properties may be computed within this framework,
although equations and implementations for high-order prop-
erties rapidly become unwieldy.

Recent work has developed an alternative, non-
perturbative, gauge-origin-invariant approach to study
molecules in magnetic fields,3, 4 without recourse to perturba-
tion theory. Apart from offering a simple and convenient way
to estimate static response quantities, this approach enables
the study of molecules subject to very strong magnetic
fields, for which a perturbation expansion converges very
slowly, if at all.4–6 In both perturbative and non-perturbative
approaches, London atomic orbitals provide an efficient
means of accelerating basis-set convergence by building part
of the magnetic response and some gauge degrees of freedom
into the basis functions. In particular, the use of London

a)Electronic mail: erik.tellgren@kjemi.uio.no
b)Electronic mail: andrew.teale@nottingham.ac.uk

orbitals makes the calculations invariant to the choice of
gauge origin for uniform magnetic fields.

While previous work was concerned with the Hartree–
Fock3 and full-configuration-interaction (FCI)6 levels of the-
ory, the present work explores the use of Kohn–Sham density-
functional theory (KS-DFT) in magnetic fields. The standard
formulation of KS-DFT is not rigorously valid in the pres-
ence of an external magnetic field. Instead, the theory needs
to be generalized and some additional ingredient besides the
charge density needs to be included in the universal exchange-
correlation functional—either the magnetic field7 or the cur-
rent density.8 We focus here on Vignale and Rasolt’s formu-
lation of current-density functional theory (CDFT), in which
this extra ingredient is the paramagnetic current density.8–10

In practice, nearly all applications of DFT to molecu-
lar magnetic properties are performed with standard, density-
dependent exchange-correlation functionals, often developed
primarily for energetics in the absence of magnetic fields.
As recently documented by comparison with high-accuracy
coupled-cluster results for magnetizabilities and rotational
g tensors11 and for nuclear shielding and spin-rotation
constants,12 the accuracy achieved by such Kohn–Sham cal-
culations is rather low. For many exchange-correlation func-
tionals, the Kohn–Sham results are no better than the Hartree–
Fock results and never better than the CCSD results. It has
been suggested that the use of CDFT may lead to improved
results.

0021-9606/2014/140(3)/034101/11/$30.00 © 2014 AIP Publishing LLC140, 034101-1
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In this paper, we present an implementation of (C)DFT
using London atomic orbitals. We commence in Sec. II by
presenting the theoretical modifications to KS-DFT neces-
sary in the presence of a magnetic field, focusing on the
Vignale–Rasolt (VR) formulation of CDFT and the asso-
ciated vorticity-dependent exchange-correlation functionals
available in the literature. In Sec. III, we present our imple-
mentation of a (C)DFT module in the LONDON program, ca-
pable of performing both standard DFT and CDFT calcula-
tions in the presence of magnetic fields. Results using CDFT
are presented in Sec. IV for magnetic properties typically ac-
cessible by response theory. Comparisons of these results with
recent benchmark data and those from standard DFT calcu-
lations allow us to assess the quality of the different CDFT
functionals. In Sec. V, we extend our study to field strengths
where response theory is no longer applicable; in this regime,
the results are compared with those obtained from FCI cal-
culations. Finally, in Sec. VI, we make some concluding re-
marks and discuss directions for future work.

II. THEORY

In the present section, we first consider the Vignale–
Rasolt formulation of CDFT in Sec. II A; next, we consider
the Vignale, Rasolt, and Geldart (VRG) functional and its pa-
rameterizations in Sec. II B.

A. The Vignale–Rasolt universal CDFT functional

In the presence of a magnetic field, the non-relativistic
electronic Hamiltonian takes the form (atomic units)

Ĥ [v, A] = 1

2

N∑
k=1

(p̂k + A(rk))2 +
N∑

k=1

v(rk) + 1

2

N∑
k �=l

1

rkl

,

(1)
where N is the number of electrons, p̂k is the canonical-
momentum operator of electron k, v(r) is the external scalar
potential at position r, and the magnetic vector potential A(r)
describes the external magnetic field B(r) = ∇ × A(r). In
CDFT, the electronic ground-state energy may then be ex-
pressed as follows,8

E[v, A] = inf
ψ

〈ψ |Ĥ [v, A]|ψ〉

= inf
ρ, jp

(
F [ρ, jp] +

∫ (
ρv + 1

2ρA2 + jp · A
)

dr
)

,

(2)

where ρ is the electron density, jp is the paramagnetic cur-
rent density, and F [ρ, jp] is the Vignale–Rasolt constrained-
search universal current-density functional:

F [ρ, jp] = inf
ψ �→ρ, jp

〈ψ |Ĥ [0, 0]|ψ〉. (3)

In Kohn–Sham theory, this functional may be decomposed
further into a Kohn–Sham noninteracting kinetic-energy term
Ts[ρ, jp], a Hartree term J[ρ], and an exchange-correlation
term Fxc[ρ, jp]:

F [ρ, jp] = Ts[ρ, jp] + J [ρ] + Fxc[ρ, jp]. (4)

From gauge-invariance considerations, Vignale and Rasolt8, 9

argued that the exchange-correlation energy depends only on
jp through the gauge-invariant vorticity,

ν(r) = ∇ × jp(r)

ρ(r)

= ρ(r)∇ × jp(r) − ∇ρ(r) × jp(r)

ρ(r)2
. (5)

In the expressions given above, the spin degrees of free-
dom and the spin-Zeeman term have been neglected. The lit-
erature contains slightly different formalisms for taking these
into account. In particular, F and Fxc have been considered
functionals of the following variables:

(1) the total density ρ, the spin density m, and the total para-
magnetic current density jp,

(2) the total density ρ and the total paramagnetic current-
spin density jm = jp + ∇ × m,13

(3) the fully spin-resolved densities ρ↑ and ρ↓ and param-
agnetic current densities jp;↑ and jp;↓.9

The choice between spin-resolved or total densities matters
in particular for the vorticity, which is not additive with re-
spect to spins, ν tot �= ν↑ + ν↓ and which vanishes identi-
cally for densities arising from a single natural orbital (or
Kohn–Sham orbital). Hence, it is possible for ν tot �= 0, yet
ν↑ ≡ ν↓ ≡ 0 (e.g., for a two-electron system in a triplet spin
state). In the present work, we apply existing approximate
functionals to closed-shell systems, for which these distinc-
tions do not matter. We, therefore, suppress spin indices in the
following.

The fact that vorticities arising from a single orbital van-
ish identically raises the question as to which paramagnetic
densities (ρ, jp) can be represented by a Kohn–Sham ground-
state wave function. Clearly, a closed-shell two-electron sys-
tem with a nonzero total vorticity is neither non-interacting v-
representable nor N-representable by a Kohn–Sham system.
Moreover, an open-shell two-electron system may feature
non-vanishing spin vorticities, which also cannot be repre-
sented by a Kohn–Sham system; see also Taut et al. for a dis-
cussion of non-interacting v-representability in two-electron
systems.14 For N ≥ 4 electrons, a recent result shows that
all paramagnetic densities satisfying mild regularity condi-
tions are non-interacting N-representable.15 Depending on
how the question of non-interacting N-representability is re-
solved for few-particle systems and how non-interacting v-
representability is resolved for N ≥ 3, a rigorous approach
to CDFT may require extended (ensemble) Kohn–Sham the-
ory and the use of methods for determining fractional occupa-
tion numbers.16–19 It has recently been proved that essentially
any density and paramagnetic current density (subject only
to the minimal regularity condition that a von Weizsäcker-
like bound on the kinetic energy is locally integrable) are N-
representable in extended Kohn–Sham CDFT.20

B. The VRG exchange-correlation functional

Compared with the very large number of DFT exchange-
correlation functionals, there exist only a handful of specific
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FIG. 1. Different model functions g(ρ) used in the VRG functional.

CDFT functionals. Some of these are based on the vorticity
expansion and take the general form

FVRG[ρ, ν] =
∫

g(ρ(r)) |ν(r)|2 dr, (6)

where approximations to g(ρ) have been established from
models of the uniform electron gas. Indeed, such a functional
form was considered by Vignale and Rasolt already in Ref. 8
and subsequently fitted to reference values computed with the
random-phase approximation (RPA) by Vignale, Rasolt, and
Geldart in Ref. 21.

This original parameterization has been revisited sev-
eral times—specifically, re-parameterizations have been pro-
posed by Lee, Handy, and Colwell (LHC),22, 23 by Orestes,
Marcasso, and Capelle (OMC),24 by Tao and Perdew (TP),25

and by Tao and Vignale (TV).26 Additionally, Higuchi
and Higuchi (HH)27, 28 have constructed an approximate
exchange-correlation functional designed to satisfy exact con-
ditions derived from scaling relations for the CDFT exchange
and correlation energies.

For molecules, it is essential that the parameterization of
the VRG functional has a sensible low-density limit. How-
ever, in the above parameterizations, fitting reference data
for g(ρ) were available only for Wigner–Seitz radii in the
range 0 < rs ≤ 10 (VRG, LHC, OMC, TP) and in the range
0 < rs ≤ 20 (TV). The low-density limit is consequently un-
derdetermined by the reference data.

The low-density behaviour of the different parametriza-
tions is shown in Fig. 1. Importantly, the original VRG
form and the OMC re-parametrization do not tend to zero
in the low-density limit, making them ill-suited for molec-
ular applications. By contrast, the LHC, TP, and TV re-
parametrizations do tend to zero, albeit slowly—for suffi-
ciently small ρ, we find that

gLHC(ρ) ≈ gTP(ρ) ≈ gTV(ρ) ∼ −ρ1/3. (7)

For the LHC and TV re-parameterizations, which result in
everywhere negative functions gLHC(ρ) and gTV(ρ), respec-
tively, this decay behaviour is readily visualized in a log–log
plot; see Fig. 2 (the TP parametrization is not shown as it dif-
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FIG. 2. The low-density behaviour of three model functions g(ρ) used in
the VRG functional. The Higuchi–Higuchi exchange functional HHx has
been reparametrized so that the total exchange-correlation functional ap-
proaches zero for small densities; however, the correlation functional HHc
goes through a singularity and a sign shift at ρ = 10−30 a.u. The indicated
asymptotic HHx+HHc behaviour therefore does not extend to this region.

fers very little from the TV parameterization on the scale of
the plot and the low-density asymptotes coincide).

Higuchi and Higuchi’s exchange functional HHx is con-
stant: gHHx(ρ) = 2 × 3.76 × 10−4 a.u. By adjusting this con-
stant (i.e., setting D̄x = −C̄0 in the notation of Ref. 27), it is
possible to make their total gHH(ρ) almost vanish for small
densities ρ � 10−30 a.u; see Fig. 2. However, the Higuchi–
Higuchi correlation functional HHc has a singularity at
ρ = 10−30 a.u., so the approach to the low-density limit is
interrupted by an infinite. We denote the modified Higuchi–
Higuchi functional by HHmod.

Finally, we note that Zhu and Trickey29 compared
vorticity-dependent functionals with an exactly solvable
model for a Hooke’s atom in a magnetic field, reporting that
the vorticity is a difficult quantity to work with. An alternative
approach has been proposed by Becke,30 while a more elabo-
rate version (relying on currents from individual Kohn–Sham
orbitals) was proposed by Pittalis et al.31 These functionals
are based on the observation that a gauge-invariant density can
be formed from a combination of the Kohn–Sham canonical-
kinetic-energy density and the paramagnetic current density.
Letting φk denote the occupied Kohn–Sham orbitals that give
rise to the densities ρ and jp, the quantity

τ̃ (r) = 1
2

∑
k

|∇φk(r)|2 − |jp(r)|2
2ρ(r)

(8)

is gauge invariant.32 The paramagnetic current can therefore
be incorporated in an exchange-correlation functional via τ̃ .
Exploration of this alternative is beyond the scope of the
present work.

III. IMPLEMENTATION

In our calculations, we consider a uniform magnetic field
B, described by a cylindrical vector potential

A(r) = 1

2
B × (r − g), (9)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.243.253.104 On: Wed, 15 Jan 2014 14:57:02



034101-4 Tellgren et al. J. Chem. Phys. 140, 034101 (2014)

where g is the gauge origin. In exact calculations, with com-
plete orbital basis sets, the values of physical quantities are
independent of the gauge origin (in fact, invariant to all gauge
transformations). For finite basis sets, gauge-origin invariance
can be ensured by employing London orbitals of the form

ωγ (r) = χγ (r) e−iA(Nγ )·r, (10)

where χγ (r) is a standard Gaussian-type basis function cen-
tred on Nγ and A(Nγ ) is the vector potential evaluated at the
centre of the Gaussian. Effectively, the basis then becomes a
hybrid plane-wave/Gaussian basis for finite magnetic fields.3

The main modifications to the existing LONDON

Hartree–Fock code3 in order to enable (C)DFT calculations
are the implementation of a numerical integration scheme, the
evaluation of quantities such as ρ(r), ∇ρ(r), jp(r), and ν(r)
on the associated numerical grid and the assembly of these
components in the expressions for the exchange-correlation
energies and the functional derivatives required for their asso-
ciated potentials.

For the molecular numerical integration, we construct
a set of grid points and weights using Becke’s space par-
titioning scheme with atomic size corrections,33 decompos-
ing the molecular integral into a sum of one-centre atom-like
integrals. To eliminate crowding of points close to nuclei, grid
pruning is implemented using the approach outlined by Mur-
ray, Handy, and Laming.34 For the radial part of these integra-
tions, we employ the scheme proposed by Lindh, Malmqvist,
and Gagliardi (LMG);35 for the angular part, we employ
Lebedev quadrature.36–41 We have tested our C++ implemen-
tation for standard density functionals by comparing with the
DALTON quantum chemistry program,42, 43 in which similar
Fortran 77 angular and radial implementations are available.
Because of the slow decay of the vorticity-dependent inte-
grand in the present VRG parameterizations, we have used
very conservative screening criteria when processing points
on the integration grid.

The evaluation of ρ(r), ∇ρ(r), jp(r), and ν(r) at the
grid points is straightforward, given the elements of the one-
particle reduced density matrix Dγ ζ and the values of basis
functions ωγ (r) and their gradients ∇ωγ (r) at the grid points:

ρ(r) =
∑
γ ζ

ωγ (r) Dγζ ω∗
ζ (r), (11)

∇ρ(r) =
∑
γ ζ

ωγ (r) Dγζ ∇ω∗
ζ (r) + c.c., (12)

jp(r) = i

2

∑
γ ζ

ωγ (r) Dγζ ∇ω∗
ζ (r) + c.c., (13)

where “c.c.” denotes the complex conjugate of the preceding
expression. (Note that we work with the number density and
number current rather than the electrical density and electri-
cal current, the difference being a factor of −e in general, or
−1 in atomic units.) Notably, the curl of jp can be computed
from the first-order functional derivatives of basis functions
since the second-order derivatives cancel:

∇ × jp(r) = i
∑
γ ζ

Dγζ ∇ωγ (r) × ∇ω∗
ζ (r). (14)

At first glance, the right-hand side looks like an imagi-
nary quantity; however, for a complex vector w, the cross-
product iw × w∗ is real. A transformation to natural orbitals
(or Kohn–Sham orbitals) thus makes it clear that the right-
hand side is real.

The vorticity may be assembled from the above densi-
ties using the right-hand side of Eq. (5) above. In practice, to
guard against division by near-zero, we prefer the regularized
vorticity

νε(r) = ρ(r)∇ × jp(r) − ∇ρ(r) × jp(r)√
ε4 + ρ(r)4

, (15)

where ε plays the role of a soft density cut-off. This regu-
larization results in an underestimate of the magnitude of the
true vorticity.

Once the required (C)DFT quantities have been assem-
bled at the grid points, the exchange-correlation energies
and the derivatives required for construction of their associ-
ated Kohn–Sham matrix contributions can be calculated. For
the standard DFT contributions, we use the flexible XCFUN

package,44 which uses automatic differentiation to provide
derivatives of the exchange-correlation energies from speci-
fied energy expressions. Once these contributions have been
evaluated, LONDON constructs the associated Kohn–Sham
matrix elements.

For the CDFT contributions (which in the present work
are added as corrections to standard functionals), we have
implemented the exchange-correlation energy and Kohn–
Sham matrix element constructions in the LONDON code. For
FVRG(LHC) and FVRG(TV), which have everywhere negative in-
tegrands, the regularization of Eq. (15) is used and the corre-
sponding vorticity correction is therefore underestimated—at
least when applied non-self-consistently. For VRG parame-
terizations that decay as ρ1/3 in the low-density limit, the reg-
ularization in Eq. (15) yields a VRG integrand of the form

g(ρ)ν2
ε ∼ −ρ1/3

∣∣ρ∇× jp − ∇ρ × jp

∣∣2

ε4 + ρ4
. (16)

Without regularization (i.e., with ε = 0), this decay may be
numerically problematic—in regions where the vorticity van-
ishes or is very small, numerical noise in the squared factor
would be amplified by a factor ρ−11/3. The need for appropri-
ate regularization of the vorticity has been noted in Ref. 45.
The sensitivity of calculated properties to the choice of the
regularization parameters is investigated in Sec. IV.

IV. (C)DFT IN THE PERTURBATIVE REGIME

Over the last two decades, perturbative calculations of
second-order properties such as magnetizabilities and nuclear
shielding constants have become routine in quantum chem-
istry, also with London atomic orbitals. Properties that require
higher-order responses such as hypermagnetizabilities have
received much less attention. Perturbative approaches have
been applied at the coupled-perturbed Hartree–Fock level us-
ing standard (non-London) orbitals by Pagola et al.,46, 47 while
the finite-difference approach has been explored by us at
the Hartree–Fock level using London orbitals.3 However, we
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are not aware of any results for hypermagnetizabilities that
employ methods including a correlation treatment.

In this section, we present applications of CDFT to mag-
netizabilities, fourth-rank hypermagnetizabilities, and nuclear
shielding constants. The implementation of molecular prop-
erties is much simpler by finite-field techniques than that by
perturbation techniques, allowing us to assess readily the per-
formance of a variety of CDFT functionals, comparing their
results with Hartree–Fock theory, the corresponding DFT
functionals and (where available) accurate benchmark data.

We have performed calculations on a set of 27 molecules
used in Ref. 12 at their CCSD(T)/cc-pVTZ optimized ge-
ometries, namely, AlF, C3H4 (cyclopropene), FCCH, C2H4,
H2C2O (ketene), CH3F, CH4, CO, FCN, HCN, HCP, HF, LiH,
LiF, NH3, N2, N2O, PN, H4C2O (oxirane), OCFH, CH2O
(formaldehyde), OCS, OF2, HOF, H2O, H2S, and SO2 (O3 has
been excluded because of its multi-reference character). In all
cases the aug-cc-pCVTZ London atomic orbital basis set has
been employed. The CDFT vorticity dependent functionals
were regularized with a hard cut-off on the Wigner–Seitz ra-
dius, rs, of 9.1055 a.u. and a soft cut-off ε = 10−14 a.u., see
Eq. (15). Experimentation revealed that results were not par-
ticularly sensitive to the angular or radial grid parameters. The
default parameters were therefore used. For the Lebedev grid,
the angular integration was specified to be exact for spherical
harmonics up to order 35; in the LMG radial integration, the
accuracy parameter specifying the upper limit of the error in
the case of an atomic integration was set to 10−13 a.u.

Even when employing the regularization of Eq. (15)
issues with self-consistent-field (SCF) convergence were
still encountered for the VRG(LHC) parameterized CDFT
corrections at some field strengths, when employing the
standard direct-iteration-in-the-iterative-subspace (DIIS) ap-
proach. Interestingly, no such issues were encountered with
the VRG(TP) parameterization, for which calculations on the
full set of 27 molecules could be routinely performed at a
range of field strengths up to 1 a.u. This may reflect differ-
ences in the function g(ρ) examined in Figures 1 and 2. In
particular, the 8 molecules CH3F, HCN, HCP, H4C2O, CH2O,
OCS, OF2, and SO2 could not be reliably converged using
the VRG(LHC) parameterization. To account for this all plots
and error analyses in the main manuscript refer to the remain-
ing subset of 19 molecules. The full data set may be found
in the supplementary material,48 including VRG(TP) based
results for all 27 molecules. We emphasize that some regu-
larization is necessary for all of the VRG based forms; even
for VRG(TP) applying less regularization leads to similar nu-
merical difficulties. We observe that these issues are, how-
ever, somewhat less severe with the VRG(TP) parameteriza-
tion than with the VRG(LHC) parameterization.

A. Molecular magnetizabilities
and hypermagnetizabilities

Consider a uniform magnetic field B whose vector poten-
tial is given by Eq. (9). Expanding the energy in orders of B,

we obtain for a closed-shell system,

E(B) =E(0) − 1

2

∑
αβ

χαβBαBβ

− 1

4!

∑
αβγ ζ

Xαβγ ζ BαBβBγ Bζ + O(B6), (17)

where odd-order terms vanish. The magnetizability tensor
χαβ and fourth-rank hypermagnetizability tensor Xαβγ ζ can
be obtained by least-squares fitting of a polynomial to ener-
gies E(Bα�) for a suitable discrete grid of sample fields Bα�.
We consider here only the diagonal tensor elements (which
require less fitting data), using Bα� = �eα . It was found that
� = 0.00, 0.01, . . . , 0.03 a.u. in each Cartesian direction, α

∈ {x, y, z} provided sufficient data to accurately determine
molecular magnetizabilities and shielding constants; the re-
sults reproducing those of the perturbative DALTON42, 43 im-
plementation to better than 0.1 × 10−30 JT−2 and 0.1 ppm,
respectively, for standard density functionals. Careful study
of the convergence of hypermagnetizabilities revealed that
higher field strengths were required to obtain robust re-
sults and the grids used were supplemented with the points
� = 0.03, 0.04, . . . , 0.1 a.u. in each Cartesian direction, mak-
ing the calculations considerably more expensive. The tensor
elements were calculated by fitting 6th-order polynomials in
each Cartesian direction.

In a previous benchmark study of magnetizabilities and
g tensors calculated from standard DFT functionals, Lut-
næs et al. found that the standard DFT functionals (which
neglect the current dependence) in general give poorer re-
sults than does the Hartree–Fock model.11 Moreover, whereas
the Hartree–Fock model (like the coupled-cluster models) on
average underestimates magnetizabilities, the local density
approximation (LDA) and generalized gradient approxima-
tion (GGA) functionals overestimate the magnetizabilities.
In Fig. 3, we have plotted the magnetizabilities obtained

FIG. 3. Illustration of the errors in isotropic molecular magnetizabili-
ties (10−30 JT−2) calculated using DFT functionals with and without the
VRG(LHC) and VRG(TP) corrections in the aug-cc-pCVTZ basis set. Re-
sults that failed to converge during SCF optimization with the VRG(LHC)
corrections have been omitted. The grey boxes enclose one sample standard
deviation above and below the mean error. The mean error for each method
is indicated by a horizontal blue line. The plot markers show the individual
errors for each of the 19 molecules listed in Sec. IV.
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TABLE I. Hypermagnetizability tensor elements (SI a.u.) calculated using DFT functionals in the aug-cc-pCVTZ basis set. The corresponding Hartree–Fock
results are included for comparison. Results are presented here for the subset of 19 molecules described in Sec. IV. Data for the full set of 27 molecules may be
found in the supplementary material.48

HF KT3 PBE

xxxx yyyy zzzz xxxx yyyy zzzz xxxx yyyy zzzz

AlF 94.9 94.9 91.0 90.9 90.9 95.5 84.7 84.7 95.7
C3H4 − 3.8 − 250.0 222.0 45.0 − 300.0 233.0 25.3 − 297.0 223.0
FCCH − 9.6 − 9.6 40.3 − 19.0 − 19.0 45.8 − 21.6 − 21.6 45.8
C2H4 − 60.1 − 41.1 − 4.6 − 50.4 − 70.9 − 45.0 − 69.9 − 91.7 − 43.5
H2C2O − 1.3 − 94.4 228.0 − 6.8 − 115.0 252.0 − 10.6 − 113.0 259.0
CH4 91.0 91.1 100.0 104.0 104.0 115.0 105.0 105.0 116.0
CO − 6.4 − 6.4 17.5 15.8 15.8 21.2 9.9 9.9 21.8
FCN − 10.1 − 10.1 23.4 − 12.6 − 12.6 26.6 − 16.0 − 16.0 26.7
HF 7.9 7.9 5.7 11.8 11.8 8.8 11.9 11.9 9.2
LiH 75.1 75.1 67.9 160.0 160.0 94.9 157.0 157.0 97.4
LiF 4.9 4.9 12.7 41.7 41.7 26.7 35.3 35.3 26.8
NH3 38.9 38.9 50.7 49.2 49.2 60.3 49.3 49.3 61.0
N2 − 16.7 − 16.7 15.8 6.4 6.4 17.8 − 1.7 − 1.7 18.2
N2O − 69.6 − 69.6 19.1 − 81.6 − 81.6 21.8 − 85.3 − 85.3 22.2
PN − 230.0 − 230.0 56.2 − 294.0 − 294.0 57.0 − 381.0 − 381.0 57.4
HFCO 16.4 − 20.5 − 65.2 22.4 − 18.9 − 49.3 27.1 − 26.2 − 66.1
HOF 29.9 26.6 15.9 6.1 − 12.7 24.4 5.1 − 18.7 24.9
H2O 22.3 14.8 13.5 30.6 21.5 21.7 30.7 21.8 21.8
H2S 197.0 81.7 117.0 206.0 90.0 124.0 209.0 90.4 125.0

using the conventional LDA, Perdew, Burke, and Ernzerhof
(PBE),63 and Keal and Tozer (KT3)64 functionals without cur-
rent correction and with the VRG(LHC) and VRG(TP) cor-
rections; for comparison, we have included the Hartree–Fock
results for the same systems. We see the same trends as ob-
served in Ref. 11, the LDA, PBE, and KT3 functionals overes-
timating the magnetizabilities and being less systematic than
the Hartree–Fock model.

Unfortunately, the addition of the VRG functional (with
the LHC and TP parameterizations) does not improve the
situation. For all three DFT functionals, the VRG(LHC)
correction increases the error in the magnetizabilities, in-
creasing both mean errors and the spread. The results
are slightly better for the VRG(TP) functional but still
poorer than those obtained without the VRG correction.
Clearly, the VRG-corrected functionals cannot be recom-
mended for the calculation of magnetizabilities. We note
that Lee, Collwell, and Handy22 studied magnetizabilities
for a few small systems in the context of CDFT using
a perturbative implementation. Many of the systems they
considered are included in the present work, however, a
direct comparison is difficult because of the use of dif-
ferent basis sets and the fact that the results of Ref. 22
are not gauge-origin invariant. The present results may
therefore be considered a more extensive benchmark ad-
dressing some of the issues associated with these earlier
calculations.

In Table I, we have listed the hypermagnetizabili-
ties calculated at the Hartree–Fock, KT3, and PBE levels
of theory, all without VRG corrections; the corresponding
VRG-corrected results may be found in the supplementary
material.48 To our knowledge, these are the first published
Kohn–Sham hypermagnetizabilities.

We observe an overall qualitative agreement between
the KT3 and PBE hypermagnetizabilities—except for N2 and
HFCO, the results agree on signs and relative magnitudes.
As expected, the agreement with the uncorrelated Hartree–
Fock model is poorer, with more instances of sign differences.
However, without high-quality reference data (such as those
provided by coupled-cluster theory), it is difficult to assess
properly the performance of the Hartree–Fock and Kohn–
Sham DFT models for hypermagnetizabilities.

We have carried out Kohn–Sham calculations of hyper-
magnetizabilities with the VRG correction added; the results
are included in the supplementary material.48 In nearly all
cases, the VRG correction to the hypermagnetizability tensor
elements is negative; however, in the absence of accurate ref-
erence data, it is difficult to judge the quality of the CDFT re-
sults for the hypermagnetizabilities. Bearing in mind the poor
performance of the VRG correction for magnetizabilities, it
is a safe assumption that the hypermagnetizability corrections
are poor as well.

B. Nuclear shielding constants

In a recent benchmark study of nuclear magnetic
resonance (NMR) shielding constants and spin-rotation
constants,12 the accuracy achieved by Kohn–Sham calcula-
tions was found to be rather low. Although the various DFT
approximations improve slightly upon the Hartree–Fock re-
sults, none of the DFT functionals provide an accuracy sim-
ilar to that of CCSD or CCSD(T) theory; moreover, the in-
clusion of vibrational corrections worsened the agreement
with experimental values. Regarding the different exchange-
correlation functionals, a general improvement was observed
when going from LDA to GGA functionals, with further
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FIG. 4. The VRG correction to the oxygen shielding constant in the water molecule plotted against the integration regularization cut-off parameter ρcut-off for
the LHC (left), TP (middle), and HHmod (right) parameterizations of g(ρ) in Eq. (6). Both hard and soft cut-offs are illustrated in the plots. The Huz-II basis,
with London gauge factors, was used in all cases.

improvements observed for hybrid functionals—in particular,
in combination with an optimized-effective-potential (OEP)
approach. Interestingly, KS[CCSD] and KS[CCSD(T)] calcu-
lations, where the Kohn–Sham system reproduces the CCSD
and CCSD(T) densities, respectively, gave errors similar to
those of the OEP calculations. This suggested that the neglect
of current dependence may be a significant factor in determin-
ing the accuracy of these calculations.

To calculate NMR shielding constants non-perturbatively
we consider the dependence of the molecular electronic en-
ergy E(B, Mk) on the external magnetic field B and the nu-
clear magnetic moment Mk of nucleus k represented by the
vector potential,

Ak(r) = μ0

4π

Mk × (r − K)

|r − K|3 = μ0

4π
Mk × 1

∂K
1

|r − K| , (18)

where K is the position of the nucleus. We obtain the Taylor
expansion

E(B, Mk) = E(0, 0) +
∑
αβ

σk;αβBαMk;β + · · · , (19)

where the nuclear shielding tensor is the leading-order mixed
term in the expansion of the energy,

σk;αβ = ∂2E(B, Mk)

∂Bα∂Mk;β

∣∣∣
B=0,Mk=0

. (20)

The kinetic-energy operator in the Hamiltonian now becomes
(atomic units) π̂2/2 = (p̂ + A(r) + Ak(r))2/2. Exploiting the
Hellmann–Feynman theorem, we compute the derivative with
respect to Mk analytically,

�k;β(B) = ∂E(B, Mk)

∂Mk;β

∣∣∣
Mk=0

= eμ0

4πm
εαβγ

∂

∂Kγ

〈ψ | {p̂α + eAα, |r − K|−1
} |ψ〉,

(21)

where the braces denote the anti-commutator. The expectation
value is similar to a nuclear attraction integral, and may be
evaluated using the McMurchie–Davidson scheme described
in previous work.3 The remaining differentiation may be per-
formed directly by numerical differentiation,

σk;αβ ≈ �k;β(εeα) − �k;β(−εeα)

2ε
= �k;β(εeα)

ε
, (22)

or indirectly by polynomial fitting to computed �k;β(B) val-
ues as a function of B. The fitting is simplified by the fact that
only odd-orders of B enter in the expansion of �k;β(B).

Before considering the benchmark calculations, we have
in Fig. 4 plotted the VRG corrections to the oxygen shield-
ing constant in H2O against the integration cut-off parame-
ter ρcut-off (with hard and soft cut-offs) for the LHC, TP, and
HHmod parameterizations of g(ρ). Substantial variations in
the corrections are observed and no convergence is achieved
with reasonable cut-offs—in particular, for the LHC param-
eterization (with variations over about 60 ppm in the plot).
The LDA- and BLYP-based VRG corrections are similar to
each other for cut-offs larger than about 10−5; for smaller cut-
offs, the LDA-based corrections tend to be larger than the
BLYP-based corrections. Moreover, the differences between
the corrections obtained with hard and soft cut-offs are small
compared with the differences observed for different cut-off
parameters.

The TP correction is much better behaved, with varia-
tions on the order of 3.5 ppm and a consistent sign for the
correction term. However, this variation and a lack of con-
vergence with respect to varying the cut-off parameters mean
that it cannot be recommended for practical use. The HHmod
parameterization shows a large variation with regularization
parameters and so also canot be recommended for practical
use. However, it is interesting that for the large cut-off values
HHmod leads to a negative correction, which is opposite in
sign to the LHC and TP corrections with high cut-offs. This
difference may reflect the qualitative difference in the func-
tions g(ρ) in Figures 1 and 2, in particular for large densities
gHHmod(ρ) is positive, whilst gLHC(ρ) and gTP(ρ) are negative.
This further re-enforces the need for an improved parameteri-
zation of g(ρ)—the stability of the functional obtained and the
quality of the results is strongly influenced by this parameter-
ization. Similar observations may be made for all molecules
in our data set, whilst this set consists of only 27 molecules
the results indicate that the lack of convergence with respect
to regularization parameters seems to be a consistent issue,
limiting the practical utility of VRG based functionals.

With these caveats in mind, we consider the nuclear
shieldings calculated for the 27 molecules in our benchmark
set at the same levels of theory and with the same param-
eterizations (with a hard cut-off ρcut-off = 3.1 × 10−4 ≡ rs

= 9.1055) as for the magnetizabilities in Sec. IV A. In Fig. 5,
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FIG. 5. Illustration of the errors in isotropic shielding constants (ppm) calcu-
lated using DFT functionals with and without the VRG(LHC) and VRG(TP)
corrections in the aug-cc-pCVTZ basis set. Results that failed to converge
during the SCF optimization with the VRG(LHC) correction have been omit-
ted. The grey boxes enclose one sample standard deviation above and below
the mean error. The mean error for each method is indicated by a horizontal
blue line. The plot markers show the individual errors for each chemically
unique nuclei in the 19 molecules listed in Sec. IV (a total of 48 data points).

we present the data for chemically unique nuclei in the subset
of 19 molecules defined in Sec. IV (a total of 48 data points);
all values are available in the supplementary material.48 We
note that the Kohn–Sham DFT shielding constants for LDA
and PBE do not represent a substantial improvement over the
Hartree–Fock constants, although they have a smaller spread
their mean errors are in general worse. The KT3 functional
does lead to a small improvement in both the mean error and
a more significant improvement in the spread of the values.
The overall trend is consistent with that observed in Ref. 12.

However, as for the magnetizabilities in Fig. 3, the addi-
tion of the VRG correction does not improve the calculated
shieldings—in fact their quality tends to deteriorate with the
application of VRG correction to the functional, especially for
the LHC parameterization. These results are in line with the
early observations of Lee, Handy, and Colwell23 and indicate
that (at least at the GGA level) improvement of the underlying
functional to describe NMR properties, as is the case for KT3,
does not lead to any significant difference when the associ-
ated VRG correction is calculated. The interplay between the
choice of functional and the quality of VRG-type corrections
beyond the GGA level remains to be investigated in future
work.

V. (C)DFT BEYOND THE PERTURBATIVE REGIME

The availability of accurate current-density functionals
would facilitate the study of molecules in very strong mag-
netic fields such as those encountered around white dwarf
stars and magnetars.49 Such strong fields may have a dramatic
impact on the physics and chemistry of small molecules. Sev-
eral studies have applied quantum-chemical methods such as
the Hartree–Fock and FCI methods to small atoms as well
as one- and two-electron molecular systems.50–56 Such sys-
tems have also been studied with methods constructed for

very high-accuracy.57 Larger systems have been explored us-
ing density functionals based on asymptotic estimates for
energies.58, 59

On a technical note, very strong magnetic fields,
B � 1 a.u. = 2.35 × 105 T result in a substantial deforma-
tion and compression of atomic orbitals.56, 60–62 In such fields,
traditional (isotropic) Gaussian-type orbitals are ill suited for
the expansion of the electronic wave function. In the present
work, we use conventional quantum-chemical Gaussian-type
basis sets. As a result, we are limited to field strengths up to B
∼ 1 a.u., for which the orbital deformation may be handled by
decontracting the basis set and adding polarization functions.

An interesting phenomenon that can be addressed within
the present computational limitations is the quality of
(C)DFT approximations in describing chemical bonding and
molecular orientation in magnetic fields. In magnetic fields
B ∼ 1 a.u., molecules that are otherwise unstable such as H2

in the triplet state become stable, with a favoured orientation
in the field.4, 6, 56 In Ref. 6, this phenomenon was explained
in terms of a new chemical bonding mechanism, perpendic-
ular paramagnetic bonding, that arises from a stabilization of
antibonding orbitals in a perpendicular orientation relative to
the magnetic field. Hartree–Fock and FCI calculations have
shown that this bonding is present in triplet H2 and singlet
He2. Moreover, calculations at the Hartree–Fock level (which
gives a qualitatively but not quantitatively correct description
for paramagnetic bonding) on singlet helium clusters up to
size He6 indicate this bonding mechanism is not restricted to
diatomic molecules.

Figures 6 and 7 show dissociation curves for the helium
dimer subject to parallel and perpendicular fields of strength
B = 1 a.u. The Hartree–Fock and FCI results are shown to-
gether with results obtained with standard (C)DFT function-
als. The u-aug-cc-pVTZ basis set, where u stands for uncon-
tracted, equipped with London orbital factors, was used. The
dimer has a weak minimum for both parallel and perpendic-
ular magnetic fields. The Hartree–Fock model underbinds,
while all tested DFT functionals overbind. By symmetry, the

FIG. 6. Dissociation curves for He2 subject to a parallel field B‖ = 1 a.u. The
u-aug-cc-pVTZ basis set was used. Note that the curves have been aligned at
R = 9 bohrs.
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FIG. 7. Dissociation curves for He2 subject to a perpendicular field
B⊥ = 1 a.u. The u-aug-cc-pVTZ basis set was used. Note that the curves
have been aligned at R = 9 bohrs.

vorticity vanishes for parallel fields. A vorticity-dependent
VRG-type functional consequently vanishes too in this case.

For perpendicular fields, however, the vorticity does not
vanish—see the dissociation curves for conventional and
vorticity-dependent functionals in Fig. 7. (The vorticity-
dependent functionals were regularized by a soft cut-off ε

= 2.3873 × 10−4 a.u., which corresponds to rs = 10 a.u.,
in these calculations.) While the Hartree–Fock model and
conventional DFT functionals show similar under- and
overbinding, respectively, the addition of the VRG(LHC) and
VRG(TP) functionals only degrade the accuracy. Both the
depth and location of the minima become less accurate, with
spurious plateaus appearing in the dissociation curves.

This behaviour may be understood from the observation
that the vorticity vanishes for perpendicular fields in the disso-
ciation and united-atom limits. Hence, the effect of the vortic-
ity may be expected to be largest at intermediate bond lengths
perpendicular to the field. Qualitatively, this behaviour is sim-
ilar to the energetic preference introduced by the perpendicu-
lar paramagnetic bonding mechanism.6 The VRG functionals
tested thus show a spurious bias towards this bonding.

The SCF Kohn–Sham optimization appears to be more
difficult when VRG functionals are used. Our implementa-
tion, which relies on a standard DIIS method, often finds
states above the ground state when VRG functionals are used.
We have dealt with this problem by starting the SCF optimiza-
tion from different density matrices—for example, obtained
by projection from a calculation with a different functional or
different geometry.

Neither the tested conventional functionals (LDA, BLYP,
B3LYP, and KT3) nor the VRG functionals (LHC and TP)
were constructed for use with very strong magnetic fields.
Whilst Hartree–Fock theory tends to lead to an under-binding,
the standard LDA, BLYP and B3LYP tend to over-bind. For
LDA this error is dramatic and similar to those observed in
the absence of magnetic fields. The GGAs improve the sit-
uation but do not fully correct the error. By contrast, the
VRG(LHC) and VRG(TP) corrected functionals are much

less robust, leading to an exaggeration of this over-binding
effect and the introduction of spurious features on the poten-
tial energy curve. At least the VRG(TV) functional is likely to
share this problem, since its model function gTV(ρ) is similar
to gLHC(ρ) and gTP(ρ).

Higuchi and Higuchi’s functional,27, 28 modified as de-
scribed above, is based on a model gHH(ρ) that is rather differ-
ent from the other functionals studied. The contribution from
VRG(HHmod) produces a purely dissociative potential en-
ergy curve for perpendicular fields (data not shown). Since
the VRG(HHmod) functional gives errors in the opposite di-
rection compared to the VRG(LHC) and VRG(TP) function-
als, an interesting possibility is to try to fit a parameteriza-
tion flexible enough to interpolate between these functionals
to benchmark data.

VI. CONCLUSIONS

We have reported an implementation of DFT and CDFT
for molecular calculations in magnetic fields. The implemen-
tation has several novel features: First, external magnetic
fields are treated non-perturbatively, enabling both static re-
sponse quantities and intrinsically non-perturbative phenom-
ena to be investigated. Second, London atomic orbitals are
used in conjunction with finite magnetic fields to achieve
gauge-origin invariance and faster basis-set convergence.
Third, the treatment of the current-dependent contribution to
the exchange-correlation functional is fully self-consistent.

Our DFT implementation has been demonstrated by
computing magentizabilities, NMR shielding constants and
hypermagnetizabilities for a set of small molecules. The
CDFT implementation has been used to explore the accu-
racy of several parametrizations of the vorticity-dependent
VRG functionals. For magnetizabilities and nuclear shielding
constants, these functionals tend to degrade accuracy com-
pared to conventional DFT functionals. Also the description
of the non-perturbative phenomenon of perpendicular param-
agnetic bonding degrades when the VRG functional is added.
Although these functionals were constructed to account for
the effects of external magnetic fields, a common problem is
that the parameter values have been selected to describe a uni-
form electron gas in the medium to high-density regime (i.e.,
rs ≤ 10 or rs ≤ 20). The low-density limit, which is impor-
tant in molecular calculations, is thus left underdetermined.
The asymptotic decay of ∼ρ−1/3ν2 seen in the presently avail-
able parametrizations appears to be too slow for molecular
calculations, making regularization necessary. Moreover, re-
sults obtained with the VRG functionals are too sensitive to
the choice of regularization parameter to be useful.

Interestingly, a modified version Higuchi and Higuchi’s
functional,27, 28 reparametrized so as to have a useful low-
density behaviour, stands out from the other VRG function-
als. It decays as ∼ρν2, which is substantially faster, and be-
cause it has the opposite sign in the medium to high-density
regime compared to the VRG(LHC) and VRG(TP) function-
als, for example, it yields errors in the opposite direction. The
latter point raises the tempting possibility of attempting to fit
an interpolation between VRG(HHmod) and VRG(LHC) or
VRG(TP) to benchmark data.
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There are several possible directions for future work on
improved CDFT corrections. First, as already discussed, the
form of the g(ρ) parameterization warrants further investiga-
tion, particularly in light of the strong sensitivity of the results
and functional stability to these parameterizations. The gen-
eration of accurate data at the FCI or coupled-cluster levels at
different field strengths using the LONDON program may pro-
vide a useful way to tailor these parameterizations for practi-
cal use. Second, the development of corrections appropriate
for addition to functionals beyond the GGA level can be pur-
sued and should lead to a better understanding of the interplay
between errors in the CDFT corrections and the underlying
functionals. Finally, to circumvent difficulties with the vor-
ticity it may be fruitful to consider other quantities on which
CDFT corrections may be constructed, such as the form of
Eq. (8). In all of these areas the present CDFT implementa-
tion should provide a useful test bed for new CDFT approxi-
mations.
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APPENDIX: PARAMETRIZATIONS OF g(ρ)

In this appendix, we collect all parametrizations of g(ρ)
plotted in Fig. 1. For consistency of presentation, the notation
has been modified from the original papers. Atomic units are
used.

Introducing the Fermi momentum kF = (3π2ρ)1/3 and
the Wigner–Seitz radius rs = (4πρ/3)−1/3, the original VRG
parametrization of Refs. 8 and 21 is given by

gorig(ρ) = 1

24π2
kF(0.02764rs ln rs + 0.01407rs), (A1)

where the first constant comes from an analytical expression:
(9π /4)−1/3/(6π ) ≈ 0.02764.

The LHC parameterization of the VRG functional is
given by

gLHC(ρ) = − 1

24π2
kF[1 − e−a0rs (a1 + a2rs)], (A2)

with a0 = 0.042, a1 = 1, and a2 = 0.028.23 Orestes, Marcasso,
and Capelle24 presented a three-term fit and a five-term fit of
the VRG integrand, the latter OMC fit being given by

gOMC(ρ) = − 1

24π2
kF[1 − COMC(ρ)], (A3)

with

COMC(ρ) = 1.038 − 0.4990r1/3
s + 0.4423

√
rs

− 0.06696rs + 0.0008432r2
s . (A4)

The TP parameterization is defined by25

gTP(ρ) = − 1

24π2
kF[1 − C̄TP(ρ)], (A5)

with

CTP
1 (ρ) = 1 + 0.027643rs log rs, (A6)

CTP
2 (ρ) = COMC(ρ) = 1.1038 − 0.4990r1/3

s + 0.4423
√

rs

− 0.06696rs + 0.0008432r2
s , (A7)

CTP
3 (ρ) = (1 + 0.027rs)e

−0.041rs , (A8)

C̄TP(ρ) = [
CTP

1 e−2.8rs + (1 − e−2.8rs )CTP
2

]
e−0.05rs

+ (1 − e−0.05rs )CTP
3 . (A9)

Finally, the TV parameterization of the VRG functional is de-
fined by26

gTV(ρ) = − 1

24π2
kF[1 − C̄TV(ρ)], (A10)

with

CTV
1 (ρ) = 1 + b1rs log rs, (A11)

CTV
2 (ρ) = b3 + b4r

1/3
s + b5

√
rs + b6rs + b7r

2
s , (A12)

CTV
3 (ρ) = (1 + b9rs)e

−b10rs , (A13)

C̄TV(ρ) = [
CTV

1 e−b2rs + CTV
2 (1 − e−b2rs )

]
e−b8rs

+ (1 − e−b8rs )CTV
3 , (A14)

where b1 = (9π /4)−1/3/(6π ), b2 = 2.5, b3 = 1.1, b4 = −0.49,
b5 = 0.438, b6 = −0.07, b7 = 0.00182, b8 = 0.054,
b9 = 0.02, and b10 = 0.05.

The Higuchi–Higuchi parameterization is given by27, 28

gHHx(ρ) = 2Dx, (A15)

gHHc(ρ) = 2C0e−αρ ρ3

(ρ − δ)3
, (A16)

gHH(ρ) = gHHx(ρ) + gHHc(ρ), (A17)

where α = 0.653, Dx = 3.76 × 10−4, C0 = −4.669 × 10−4,
and δ = 10−30. In our modified functional, HHmod, the value
of Dx was changed to Dx = −C0 = 4.669 × 10−4 to ensure
a useful low-density limit. We have also set δ = 0, since this
makes no difference, to within normal numerical precision,
in regions where ρ � 10−30 and inclusion of regions where
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